Computer Science ›› 2026, Vol. 53 ›› Issue (1): 224-230.doi: 10.11896/jsjkx.241200147
• Artificial Intelligence • Previous Articles Next Articles
KALZANG Gyatso, NYIMA Tashi, QUN Nuo, GAMA Tashi, DORJE Tashi, LOBSANG Yeshi, LHAMO Kyi, ZOM Kyi
CLC Number:
| [1]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [2]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:4171-4186 [3]BROWN T B,MANN B,RYDER N,et al.Language Models are Few-Shot Learners[J].arXiv:2005.14165,2020. [4]TOUVRON H,LAVRIL T,IZACARD G,et al.LLaMA:Open and Efficient Foundation Language Models[J].arXiv:2302.13971,2023. [5]TOUVRON H,MARTIN L,STONE K,et al.Llama 2:OpenFoundation and Fine-Tuned Chat Models[J].arXiv:2307.09288,2023. [6]JAPKOWICZ N,STEPHEN S.The class imbalance problem:A systematic study[J].Intelligent Data Analysis,2002,6(5):429-449. [7]ALSOHYBE N T,DAHAN N A,BA-ALWI F M.Machine-Translation History and Evolution:Survey for Arabic-English Translations[J].Current Journal of Applied Science and Technology,2017,23(4):1-19. [8]ARIVAZHAGAN N,BAPNA A,FIRAT O,et al.MassivelyMultilingual Neural Machine Translation in the Wild:Findings and Challenges[J].arXiv:1907.05019,2019. [9]BAZIOTIS C,HADDOW B,BIRCH A.Language Model Priorfor Low-Resource Neural Machine Translation[C]//Procee-dings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).Association for Computational Linguistics,2020:7622-7634. [10]BRANTS T,POPAT A C,XU P,et al.Large Language Models in Machine Translation[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.2007:858-867. [11]JAPKOWICZ N,STEPHEN S.The class imbalance problem:A systematic study[J].Intelligent Data Analysis,2002,6(5):429-449. [12]JAMES G,DANIELA W,TREVOR H,et al.An Introduction to Statistical Learning:with Applications in Python[M].Cham:Springer International Publishing,2023. [13]MOHAMMED R,RAWASHDEH J,ABDULLAH M.Machine Learning with Oversampling and Undersampling Techniques:Overview Study and Experimental Results[C]//2020 11th International Conference on Information and Communication Systems.2020:243-248. [14]WEISS K,KHOSHGOFTAAR T M,WANG D.A survey oftransfer learning[EB/OL].https://doi.org/10.1186/s40537-016-0043-6. [15]KUANG J,XU G,TAO T,et al.Class-Imbalance Adversarial Transfer Learning Network for Cross-Domain Fault Diagnosis With Imbalanced Data[EB/OL].https://doi.org/10.1109/TIM.2021.3136175. [16]FADAEE M,BISAZZA A,MONZ C.Data Augmentation forLow-Resource Neural Machine Translation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2017:567-573. [17]ZHANG Z,LIU S,LI M,et al.Joint Training for Neural Machine Translation Models with Monolingual Data[J].arXiv:1803.00353,2018. [18]GIBADULLIN I,VALEEV A,KHUSAINOVA A,et al.A Survey of Methods to Leverage Monolingual Data in Low-resource Neural Machine TranslationJ].arXiv:1910.00373,2019. [19]SHORTEN C,KHOSHGOFTAAR T M,FURHT B.Text Data Augmentation for Deep Learning[J].Journal of Big Data,2021,8(1):101. [20]DUAN S,ZHAO H,ZHANG D,et al.Syntax-aware Data Augmentation for Neural Machine Translation[J].arXiv:2004.14200,2020. [21]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:Synthetic Minority Over-sampling Technique[J].Journal of Artificial Intelligence Research,2002,16:321-357. [22]NIU X,DENKOWSKI M,CARPUAT M.Bi-Directional Neural Machine Translation with Synthetic Parallel Data[C]//Procee-dings of the 2nd Workshop on Neural Machine Translation and Generation.Association for Computational Linguistics,2018:84-91. [23]ZIPF G K.Human Behavior and the Principle of Least Effort:An Introduction to Human Ecology[M].Ravenio Books,2016. [24]ZHANG Y,KANG B,HOOI B,et al.Deep Long-Tailed Lear-ning:A Survey[J].arXiv:2110.04596,2021. [25]TAN J,WANG C,LI B,et al.Equalization Loss for Long-Tailed Object Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11659-11668. [26]FADAEE M,MONZ C.Back-Translation Sampling by Targe-ting Difficult Words in Neural Machine Translation[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2018:436-446. [27]PAPINENI K,ROUKOS S,WARD T,et al.Bleu:a Method for Automatic Evaluation of Machine Translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computatio-nal Linguistics.Association for Computational Linguistics,2002:311-318. |
| [1] | YANG Jian, SUN Liu, ZHANG Lifang. Survey on Data Processing and Data Augmentation in Low-resource Language Automatic Speech Recognition [J]. Computer Science, 2025, 52(8): 86-99. |
| [2] | LI Mengxi, GAO Xindan, LI Xue. Two-way Feature Augmentation Graph Convolution Networks Algorithm [J]. Computer Science, 2025, 52(7): 127-134. |
| [3] | GAO Xinjun, ZHANG Meixin, ZHU Li. Study on Short-time Passenger Flow Data Generation and Prediction Method for RailTransportation [J]. Computer Science, 2025, 52(6A): 240600017-5. |
| [4] | CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263. |
| [5] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
| [6] | FU Kun, CUI Jingyuan, DANG Xing, CHENG Xiao, YING Shicong, LI Jianwei. Study on Graph Data Augmentation Based on Graph Entropy Theory [J]. Computer Science, 2025, 52(5): 149-160. |
| [7] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
| [8] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
| [9] | HUANG Kun, HE Lang, WANG Zhanqing. Railway Fastener Segmentation Method Based on Sc-DeepLabV3+ Model [J]. Computer Science, 2025, 52(12): 166-174. |
| [10] | ZHANG Shuo, JI Duo. Calculation of Police Incident Address Similarity Based on Fusion Model [J]. Computer Science, 2025, 52(11A): 241200035-8. |
| [11] | TAN Jianhui, ZHANG Feng. Defect Detection of Engine Engraved Surface Based on Generative Data Augmentation andImproved Faster-RCNN [J]. Computer Science, 2025, 52(11A): 241200025-7. |
| [12] | CHEN Yizhuo, ZOU Wei, WANG Hongda. Construction and Research of Convolution Enhanced Adaptive Classification Model [J]. Computer Science, 2025, 52(11A): 241200069-5. |
| [13] | ZHAO Jinshuang, HUANG Degen. Summary Faithfulness Evaluation Based on Data Augmentation and Two-stage Training [J]. Computer Science, 2025, 52(10): 266-274. |
| [14] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
| [15] | DAI Chaofan, DING Huahua. Domain-adaptive Entity Resolution Algorithm Based on Semi-supervised Learning [J]. Computer Science, 2024, 51(9): 214-222. |
|
||