Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241200025-7.doi: 10.11896/jsjkx.241200025
• Image Processing & Multimedia Technology • Previous Articles Next Articles
TAN Jianhui, ZHANG Feng
CLC Number:
| [1]YUN J P,CHOI S H,KIM J W,et al.Automatic detection of cracks in raw steel block using Gabor filter optimized by univariate dynamic encoding algorithm for searches(uDEAS)[J].NDT &E International,2009,42(5):389-397. [2]LIU Y,XU K,XU J.An Improved MB-LBP Defect Recognition Approach for the Surface of Steel Plates[J].Applied Sciences,2019,9(20):4222. [3]WANG J,FU P,GAO R X.Machine vision intelligence for pro-duct defect inspection based on deep learning and Hough transform[J].Journal of Manufacturing Systems,2019,51:52-60. [4]WEI L,DRAGOMIR A,DUMITRU E,et al.SSD:Single Shot MultiBox Detector[J].arXiv:1512.02325,2015. [5]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-Time Object Detection[C]//2016 IEEE/Conference on Computer Vision and Pattern Recognition(CVPR).2016:779-788. [6]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [7]CHEN J W,LIU Z G,WANG H R,et al.Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network[J].IEEE Transactions on Instrumentation & Measurement,2017,67(2):257-269. [8]LIU X Y,GAO J.Surface Defect Detection Method of Hot Rol-ling Strip Based on Improved SSD Model[C]//International Conference on Database Systems for Advanced Applications.2021. [9]LI J,SU Z,GENG J,et al.Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network Science Direct[J].IFAC-Papers OnLine,2018,51(21):76-81. [10]WANG K,TENG Z,ZOU T.Metal Defect Detection Based on Yolov5[J].Journal of Physics:Conference Series,2022,2218(1):012050. [11]DING R,DAI L,LI G,et al.TDD-Net:A Tiny Defect Detection Network for Printed Circuit Boards[J].CAAI Transactions on Intelligence Technology,2019,4(2):7. [12]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//2017 IEEE/Conference on Computer Vision and Pattern Recognition(CVPR).2017:936-944. [13]YIN T P,YANG J.Detection of Steel Surface Defect Based onFaster R-CNN and FPN[C]//ICCAI’21.2021. [14]ROMBACH R,BLATTMANN A,LORENZ D,et al.High-Re-solution Image Synthesis with Latent Diffusion Models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2022:10674-10685. [15]LIU S,QI L,QIN H,et al.Path Aggregation Network for Instance Segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:8759-8768. [16]TAN M,PANG R,LE Q V.EfficientDet:Scalable and Efficient Object Detection[C]//2020 IEEE/CVF Conference on ComputerVision and Pattern Recognition(CVPR).2020:10778-10787. [17]QIAO S,CHEN L C,YUILLE A.DetectoRS:Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution[C]//2021 IEEE/Computer Vision and Pattern Recognition.2021. [18]WANG J,CHEN K,XU R,et al.CARAFE:Content-Aware ReAssembly of Features[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).2019:3007-3016. [19]PANG J,CHEN K,SHI J,et al.Libra R-CNN:Towards Ba-lanced Learning for Object Detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:821-830. [20]ZHU M J,HAN K,YU C B,et al.Dynamic Feature PyramidNetworks for Object Detection[C]//Fifteenth International Conference on Signal Processing Systems(ICSPS 2023).2024:504-511. [21]CHEN K,CAO Y,LOY C C,et al.Feature Pyramid Grids[J].arXiv:2004.03580,2020. [22]REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[J].arXiv:1804.02767,2018. [23]GE Z,LIU S,WANG F,et al.YOLOX:Exceeding YOLO Series in 2021[J].arXiv:2107.08430,2021. [24]WANG A,CHEN H,LIU L,et al.YOLOv10:Real-Time End-to-End Object Detection[C]//NIPS’24.2025:107984-108011. |
| [1] | YANG Jian, SUN Liu, ZHANG Lifang. Survey on Data Processing and Data Augmentation in Low-resource Language Automatic Speech Recognition [J]. Computer Science, 2025, 52(8): 86-99. |
| [2] | LI Mengxi, GAO Xindan, LI Xue. Two-way Feature Augmentation Graph Convolution Networks Algorithm [J]. Computer Science, 2025, 52(7): 127-134. |
| [3] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
| [4] | WANG Rui, TANG Zhanjun. Multi-feature Fusion and Ensemble Learning-based Wind Turbine Blade Defect Detection Method [J]. Computer Science, 2025, 52(6A): 240900138-8. |
| [5] | DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong. High-precision and Real-time Detection Algorithm for Photovoltaic Glass Edge Defects Based onFeature Reuse and Cheap Operation [J]. Computer Science, 2025, 52(6A): 240400146-10. |
| [6] | GAO Xinjun, ZHANG Meixin, ZHU Li. Study on Short-time Passenger Flow Data Generation and Prediction Method for RailTransportation [J]. Computer Science, 2025, 52(6A): 240600017-5. |
| [7] | ZHANG Yaolin, LIU Xiaonan, DU Shuaiqi, LIAN Demeng. Hybrid Quantum-classical Compressed Generative Adversarial Networks Based on Matrix Product Operators [J]. Computer Science, 2025, 52(6): 74-81. |
| [8] | GUO Yecai, HU Xiaowei, MAO Xiangnan. Multi-scale Feature Fusion Residual Denoising Network Based on Cascade [J]. Computer Science, 2025, 52(6): 239-246. |
| [9] | CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263. |
| [10] | CUI Kebin, HU Zhenzhen. Few-shot Insulator Defect Detection Based on Local and Global Feature Representation [J]. Computer Science, 2025, 52(6): 286-296. |
| [11] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
| [12] | FU Kun, CUI Jingyuan, DANG Xing, CHENG Xiao, YING Shicong, LI Jianwei. Study on Graph Data Augmentation Based on Graph Entropy Theory [J]. Computer Science, 2025, 52(5): 149-160. |
| [13] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
| [14] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
| [15] | CHEN Yizhuo, ZOU Wei, WANG Hongda. Construction and Research of Convolution Enhanced Adaptive Classification Model [J]. Computer Science, 2025, 52(11A): 241200069-5. |
|
||