Computer Science ›› 2019, Vol. 46 ›› Issue (1): 94-99.doi: 10.11896/j.issn.1002-137X.2019.01.014
• CCDM2018 • Previous Articles Next Articles
CAI Zi-xin, WANG Xin-yue, XU Jian, JING Li-ping
CLC Number:
[1]RADIVOJAC P,CHAWLA N V,DUNKER A K,et al.Classification and knowledge discovery in protein databases[J].Journal of Biomedical Informatics,2004,37(4):224-239.<br /> [2]ZOU Q,GUO M Z,LIU Y,et al.A classification method for class imbalanced data and its application on bioinformatics[J].Journal of Computer Research and Development,2010,47(8):1407-1414.(in Chinese)<br /> 邹权,郭茂祖,刘扬,等.类别不平衡的分类方法及在生物信息学中的应用[J].计算机研究与发展,2010,47(8):1407-1414.<br /> [3]EZAWA K J,SINGH M,NORTON S W.Learning goal oriented Bayesian networks for telecommunications risk management[C]//Proceedings of the International Conference on Machine Lear-ning.Bari,Italy:Morgan Kauffman,1996:139-147.<br /> [4]SANZ JA,BERNARDO D,HERRERA F,et al.A compact evolutionary interval valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data[C]//Proceedings of IEEE Trans on Fuzzy Systems,2015,23(4):973-990.<br /> [5]SU J S,ZHANG B F,XU X.Advances in machine learning based text categorization[J].Journal of Software,2006,17(9):1848-1859.(in Chinese)<br /> 苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859.<br /> [6]DEEBA F,MOHAMMED S K,BUI F M,et al.Learning from imbalanced data:a comprehensive comparison of classifier performance for bleeding detection in endoscopic video[C]//Proceedings of International Conference on Informatics,Electronics and Vision.IEEE,2016:1006-1009.<br /> [7]RANI K U,RAMADEVI G N,LAVANYA D.Performance of synthetic minority oversampling technique on imbalanced breast cancer data[C]//Proceedings of International Conference on Computing for Sustainable Global Development.IEEE,2016:1623-1627.<br /> [8]PROVOST F.Machine learning from imbalanced data sets 101[C]//Proceedings of the AAAI’2000 Workshop on Imbalanced Data.IEEE,2000.<br /> [9]RAO R B.Data mining for improved cardiac care[J].ACM SIGKDD Explorations Newsletter,2006,8(1):3-10.<br /> [10]DOMINGOS P.MetaCost:A general method for making classifiers cost-sensitive[C]//Proceedings of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.San Diego:CA,ACM,1999:155-164.<br /> [11]VEROPOULOS K,CAMPBELL C,CRISTIANINI N.Controlling the sensitivity of support vector machines[C]//Proceedings of the International Joint Conference on Artificial Intelligence.Stockholm,Sweden,1999:55-60.<br /> [12]CHENG F Y,ZHANG J,WEN C H.Cost-sensitive large margin distribution machine for classification of imbalanced data[J].Pattern Recognition Letters,2016,80(C):107-112.<br /> [13]CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(5):273-297.<br /> [14]STEFANOWSKI J.Dealing with data difficulty factors while learning from imbalanced data.http://www.cs.put.poznan.pl/jstefanowski/pub/jkbook7wersjaWWW.pdf.<br /> [15]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:Synthetic minority oversampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357.<br /> [16]HAN H,WANG W Y,MAO B H.Borderline-SMOTE:A new over-sampling method in imbalanced data sets learning[C]//Proceedings of International Conference on Intelligent Computing.Springer-Verlag,2005:878-887.<br /> [17]HE H,BAI Y,GARCIA E A,et al.ADASYN:Adaptive synthetic sampling approach for imbalanced learning[C]//Procee-dings of IEEE International Joint Conference on Neural Networks.IEEE,2008:1322-1328.<br /> [18]TANG B,HE H.KernelADASYN:Kernel based adaptive synthetic data generation for imbalanced learning[C]//Proceedings of Evolutionary Computation.IEEE,2015:664-671.<br /> [19]BATISTA G,PRATI R C,MONARD M C.A study of the behavior of several methods for balancing machine learningtrai-ning data[J].ACM SIGKDD Explorations Newsletter,2004,6(1):20-29.<br /> [20]CIESLAK D A,CHAWLA N V,STRIEGEL A.Combating imbalance in network intrusion datasets[C]//Proceedings of IEEE International Conference on Granular Computing.IEEE,2006:732-737.<br /> [21]BATUWITA R,PALADE V.Efficient resampling methods for training support vector machines with imbalanced datasets[C]//Proceedings of International Joint Conference on Neural Networks.IEEE,2010:1-8.<br /> [22]ZHOU Z H,LIU X Y.Training cost-sensitive neural networks with methods addressing the class imbalance problem[J].IEEE Trans on Knowledge and Data Engineering,2006,18(1):63-77.<br /> [23]SUN Z,SONG Q,ZHU X,et al.A novel ensemble method for classifying imbalanced data[J].Pattern Recognition,2015,48(5):1623-1637.<br /> [24]CHEN C,BREIMAN L.Using random forest to learn imbalanced data:Technical Report 666 .Berkeley:Department of Statistics,UC Berkeley,2004.<br /> [25]CHAN P K,STOLFO S J.Toward scalable learning with nonuniform class and cost distributions:a case study in credit card fraud detection[C]//International Conference on Knowledge Discovery and Data Mining.AAAI,1998:164-168.<br /> [26]YOAV F,SCHAPIRE R E.A desicion-theoretic generalization of online learning and an application to boosting[C]//Procee-dings of European Conference on Computational Learning Theory.Heidelberg,Berlin:Springer,1995:23-37.<br /> [27]WANG B X,JAPKOWICZ N.Boosting support vector machines for imbalanced data sets[J].Knowledge and Information Systems,2010,25(1):1-20.<br /> [28]SEIFFERT C,KHOSHGOFTAAR T M,HULSE J V,et al. RUSBoost:A hybrid approach to alleviating class imbalance[J].IEEE Trans on Systems Man and Cybernetics Part A Systems and Humans,2010,40(1):185-197.<br /> [29]GALAR M,BARRENECHEA E,HERRERA F.EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary under-sampling[J].Pattern Recognition,2013,46(12):3460-3471.<br /> [30]LIU X Y,WU J X,ZHOU Z H.Exploratory under-sampling for class-imbalance learning[J].IEEE Trans on System,Man and Cybernetics B,2009,39(2):539-550.<br /> [31]OH S,MIN S L,ZHANG B T.Ensemble learning with active example selection for imbalanced biomedical data classification[J].IEEE/ACM Trans on Computational Biology and Bioinforma-tics,2011,8(2):316-325.<br /> [32]ZHANG X X,YANG T B,SRINIVASAN P.Online asymmetric active learning with imbalanced data[C]//Proceedings of ACM SIGKDD International Conferenceon Knowledge Discovery and Data Mining.ACM,2016:2055-2064.<br /> [33]AKBANI R,KWEK S,JAPKOWICZ N.Applying support vector machines to imbalanced datasets[C]//Proceedings of the 15th European Conference on Machine Learning.Springer Berlin Heidelberg,2004:39-50.<br /> [34]GAO W,ZHOU Z H.On the doubt about margin explanation of boosting[J].Artificial Intelligence,2013,203:1-18. |
[1] | CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long. Survey of Concept Drift Handling Methods in Data Streams [J]. Computer Science, 2022, 49(9): 14-32. |
[2] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
[3] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[4] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[5] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[6] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[7] | GAO Zhen-zhuo, WANG Zhi-hai, LIU Hai-yang. Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features [J]. Computer Science, 2022, 49(7): 40-49. |
[8] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[9] | ZHANG Hong-bo, DONG Li-jia, PAN Yu-biao, HSIAO Tsung-chih, ZHANG Hui-zhen, DU Ji-xiang. Survey on Action Quality Assessment Methods in Video Understanding [J]. Computer Science, 2022, 49(7): 79-88. |
[10] | DU Li-jun, TANG Xi-lu, ZHOU Jiao, CHEN Yu-lan, CHENG Jian. Alzheimer's Disease Classification Method Based on Attention Mechanism and Multi-task Learning [J]. Computer Science, 2022, 49(6A): 60-65. |
[11] | LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73. |
[12] | DENG Kai, YANG Pin, LI Yi-zhou, YANG Xing, ZENG Fan-rui, ZHANG Zhen-yu. Fast and Transmissible Domain Knowledge Graph Construction Method [J]. Computer Science, 2022, 49(6A): 100-108. |
[13] | HUANG Shao-bin, SUN Xue-wei, LI Rong-sheng. Relation Classification Method Based on Cross-sentence Contextual Information for Neural Network [J]. Computer Science, 2022, 49(6A): 119-124. |
[14] | LIN Xi, CHEN Zi-zhuo, WANG Zhong-qing. Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning [J]. Computer Science, 2022, 49(6A): 144-149. |
[15] | KANG Yan, WU Zhi-wei, KOU Yong-qi, ZHANG Lan, XIE Si-yu, LI Hao. Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution [J]. Computer Science, 2022, 49(6A): 150-158. |
|