Computer Science ›› 2025, Vol. 52 ›› Issue (2): 107-115.doi: 10.11896/jsjkx.240600091
• Database & Big Data & Data Science • Previous Articles Next Articles
ZHENG Wenping1,2,3, HAN Yiheng1, LIU Meilin1
CLC Number:
[1]WANG W Q,YIN H Z,DU X Z,et al.Online user representation learning across heterogeneous social networks [C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2019:545-554. [2]WANG K S,SHEN Z H,HUANG C Y,et al.Microsoft academic graph:When experts are not enough [J].Quantitative Science Studies,2020,1(1):396-413. [3]FOUT A,BYRD J,SHARIAT B,et al.Protein interface prediction using graph convolutional networks[C]//Proceedings of the 31th International Conference on Neural Information Processing System.California:NIPS,2017:6533-6542. [4]BENGIO Y.Learning deep architectures for AI [J].Foundationsand trends in Machine Learning,2009,2(1):1-127. [5]GAO H C,HUANG H.Deep attributed network embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann,2018:3364-3370. [6]ARVIND V,FUHLBRUCK F,KOBLER J,et al.On weisfeiler-leman invariance:Subgraph counts and related graph properties [J].Journal of Computer and System Sciences,2020,113:42-59. [7]GIRVAN M,NEWMAN M E J.Community structure in social and biological networks [J].National Academy of Sciences,2002,99(12):7821-7826. [8]ROSSI R A,AHMED N K.Role discovery in networks [J].IEEE Transactions on Knowledge and Data Engineering,2014,27(4):1112-1131. [9]ERTTL O.ProbMinHash:A class of locality-sensitive hash algorithms for the(probability) jaccard similarity [J].IEEE Transactions on Knowledge and Data Engineering,2022,34(7):3491-3506. [10]TAN F,XIA Y X,ZHU B Y.Link prediction in complex networks:a mutual information perspective [J].Public Library of Science,2014,9(9):e107056. [11]ZHANG Q,LI M Z,DENG Y.Measure the structure similarity of nodes in complex networks based on relative entropy [J].Physica A:Statistical Mechanics and Its Applications,2018,491:749-763. [12]KATZ L.A new status index derived from sociometric analysis [J].Psychometrika,1953,18(1):39-43. [13]ZHOU T,LV L Y,ZHANG Y C.Predicting missing links via local information[J].The European Physical Journal B,2009,71(4):623-630. [14]CHEN Z Q,XIE Z,ZHANG Q.Community detection based on local topological information and its application in power grid [J].Neurocomputing,2015,170(C):384-392. [15]ZHENG W P,CHE C H,QIAN Y H,et al.A Graph clustering algorithm based on internode path metrics [J].Chinese Journal of Computers,2020,43(7):1312-132. [16]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations [C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.New York:ACM,2014:701-710. [17]GROVER A,LESKOVEC J.Node2vec:scalable feature learning for networks [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.New York:ACM,2016:855-864. [18]TANG J,QU M,WANG M Z,et al.LINE:Large-scale information network embedding [C]//Proceedings of the 24th International Conference on World Wide Web.New York:ACM,2015:1067-1011. [19]WANG D X,CUI P,ZHU W W.Structural deep network embedding [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:1225-1234. [20]RIBEIRO L F R,SAVERESE P H P,FIGUEIREDO D R.Struc2vec:Learning node representations from structural identity [C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2017:385-394. [21]MARSDEN P V,FRIEDKIN N E.Network studies of social influence [J].Sociological Methods & Research,1993,22(1):127-151. [22]MCPHERSON M,LOVIN S L,COOK J M.Birds of a feather:Homophily in social networks [J].Annual Review of Sociology,2001,27(1):415-444. [23]MARSDEN P V.Homogeneity in confiding relations [J].SocialNetworks,1988,10(1):57-76. [24]ZHANG Z,YANG H X,BU J J,et al.ANRL:Attributed network representation learning via deep neural networks [C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann,2018:3155-3161. [25]YANG H,CHEN L,PAN S R,et al.Discrete embedding for attributed graphs [J].Pattern Recognition,2022,123(C):108-368. [26]CHEN J,ZHONG M,LI J X,et al.Effective deep attributednetwork representation learning with topology adaptedsmoo-thing [J].IEEE Transactions on Cybernetics,2021,52(7):5935-5946. [27]JIANG J W,HU Y S,LI X S,et al.Analyzing online transaction networks with network motifs [C]//Proceedings of the 28th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.New York:ACM,2022:3098-3106. [28]ROSSI R A,AHMED N K,KOH E,et al.A structural graph representation learning framework [C]//Proceedings of the 13th International Conference on Web Search and Data Mining.New York:ACM,2020:483-491. [29]CHEN J S,GAO K Y,LI G C,et al.NAGphormer:A tokenized graph transformer for node classification in large graphs[C]//Proceedings of the 11st International Conference on Learning Representations.Washington DC:ICLR,2023. |
[1] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
[2] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[3] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[4] | QIAO Yu, XU Tao, ZHANG Ya, WEN Fengpeng, LI Qiangwei. Graph Neural Network Defect Prediction Method Combined with Developer Dependencies [J]. Computer Science, 2025, 52(6): 52-57. |
[5] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
[6] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[7] | HUANG Qian, SU Xinkai, LI Chang, WU Yirui. Hypergraph Convolutional Network with Multi-perspective Topology Refinement forSkeleton-based Action Recognition [J]. Computer Science, 2025, 52(5): 220-226. |
[8] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
[9] | LI Shao, JIANG Fangting, YANG Xinyan, LIANG Gang. Rumor Detection on Potential Hot Topics with Bi-directional Graph Attention Network [J]. Computer Science, 2025, 52(3): 277-286. |
[10] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
[11] | HU Haifeng, ZHU Yiwen, ZHAO Haitao. Network Slicing End-to-end Latency Prediction Based on Heterogeneous Graph Neural Network [J]. Computer Science, 2025, 52(3): 349-358. |
[12] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[13] | WANG Xin, XIONG Shubo, SUN Lingyun. Federated Graph Learning:Problems,Methods and Challenges [J]. Computer Science, 2025, 52(1): 362-373. |
[14] | TANG Ying, WANG Baohui. Study on SSL/TLS Encrypted Malicious Traffic Detection Algorithm Based on Graph Neural Networks [J]. Computer Science, 2024, 51(9): 365-370. |
[15] | CHEN Liang, SUN Cong. Deep-learning Based DKOM Attack Detection for Linux System [J]. Computer Science, 2024, 51(9): 383-392. |
|