Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240500051-7.doi: 10.11896/jsjkx.240500051
• Artificial Intelligence • Previous Articles Next Articles
FU Shufan1, WANG Zhongqing2, JIANG Xiaotong2
CLC Number:
[1]ALLAWAY E,SRIKANTH M,MCKEOWNK,et al.Adversarial Learning for Zero-Shot Stance Detection on Social Media[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics.Human Language Technologies:2021:4756-4767. [2]ZHANG H,LI Y Z,ZHU T F,et al.Commonsense-based adversarial learning framework for zero-shot stance detection[J].Neurocomputing,2024,563(2024):12693. [3]UPADHYAYA A,FISICHELLA M,NEJDL W.Intensity-Va-lued Emotions Help Stance Detection of Climate Change Twitter Data[C]//Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence.2023. [4]XU R F,ZHOU Y,WU D Y,et al.Overview of NLPCC Shared Task 4:Stance Detection in Chinese Microblogs[C]//NLPCC-ICCPOL.2016:907-916. [5]SUN Q Y,WANG Z Q,ZHU Q M,et al.Exploring VariousLinguistic Features for Stance Detection[C]//NLPCC-ICCPOL.2016:840-847. [6]KÜÇÜK D,CAN F L.Supplementary Material for:Stance Detection:A Survey[J].Association for Computing Machinery,2020,53(12). [7]ALLAWAY E,MCKEOWN K.Zero-Shot Stance Detection:A Dataset and Model using Generalized Topic Representationsd[C]//EMNLP.2020:8913-8931. [8]HE Z,MOKHBERIAN N,LERMAN K,et al.Infusing know-ledge from wikipedia to enhance stance detection[C]//Procee-dings of the 12th Workshop on Computational Approaches to Subjectivity.2022:71-77. [9]LUO Y,LIU Z,SHI Y,et al.Exploiting sentiment and common sense for zero-shot stance detection[C]//Proceedings of the 29th International Conference on Computational Linguistics.2022:7112-7123. [10]REVEILHAC M,SCHNEIDER G.Replicable semi-supervisedapproaches to state-of-the-art stance detection of tweets[J].Information Processing & Management,2023,60(2):103199. [11]JI H,LIN Z,FU P,et al.Cross-target stance detection via refined meta-learning[C]//2022 IEEE International Conference on Acoustics(ICASSP 2022).2022:7822-7826. [12]LIU R,LIN Z,FU P,et al.Connecting targets via latent topics and contrastive learning:A unified framework for robust zero-shot and few-shot stance detection[C]//IEEE International Conference on Acoustics.2022:7812-7816. [13]CHEN T,KORNBLITH S,NOROUZI M,et al.A SimpleFramework for Contrastive Learning of Visual Representations[C]//International Conference on Machine Learning.2020. [14]WEI P,MAO W.Modeling transferable topics for cross-targetstance detection[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:1173-1176. [15]ALLAWAY E,SRIKANTH M,MCKEOWN K.Adversariallearning for zero-shot stance detection on social media[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics.2021:4756-4767. [16]BALY R,DA SAN MARTINO G,GLASS J,et al.We can detect your bias:Predicting the political ideology of news articles[C]//EMNLP.2020:4982-4991. [17]LIANG B,CHEN Z,GUI L,et al.Zero-shot stance detection via contrastive learning[C]//Proceedings of the ACM Web Conference.2022:2738-2747. [18]ZUBIAGA A,KOCHKINA E,LIAKATA M,et al.Discourse-aware rumour stance classification in social media using sequential classifiers[J].Information Processing & Management,2018,54(2):273-290. [19]SUN Q Y,WANG Z Q,LI S S,et al.detection via sentiment information and neural network model[J].Frontiers of Computer Science.2019,13(1):127-138. [20]WANG C,ZHANG Y,YU X,et al.Adversarial network with external knowledge for zero-shot stance detection[C]//Procee-dings of the 22nd Chinese National Conference on Computational Linguistics.2023:824-835. [21]ZHANG X L F,BEAUCHAMP N,LU W.Generative Entity-to-Entity Stance Detection with Knowledge Graph Augmentation[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:9950-9969. [22]AUGENSTEIN I,ROCKTÄSCHEL T,VLA-CHOS A,et al.Stance detection with bidirectional conditional encoding[C]//Proceedings ofthe 2016 Conference on Empirical Methods in Natural Language Processing.2016:876-885. [23]XU C,PARIS C,NEPAL S,et al.Cross-target stance classification with self-attention networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:778-783. [24]DEVLIN J,CHANG M W,LEEK,et al.BERT:Pretraining of deep bidirectional transformers for language understandingd[C]//Proceedings of NAACL HCT.2019:4171-4186. [25]YU N,PAN D,ZHANG M,et al.Stance detection in ChineseMicroblogs with Neural Networks[M]//Natural Language Understanding and Intelliegent Applications.Springer International Publishing,2016:893-900. [26]ZUBIAGA A,KOCHKINA E,LIAKATA M,et al.Discourse-aware rumour stance classification in social media using sequential classifiers[J].Information Processing & Management,2018,54(2):273-290. |
[1] | LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6. |
[2] | YE Jiale, PU Yuanyuan, ZHAO Zhengpeng, FENG Jue, ZHOU Lianmin, GU Jinjing. Multi-view CLIP and Hybrid Contrastive Learning for Multimodal Image-Text Sentiment Analysis [J]. Computer Science, 2025, 52(6A): 240700060-7. |
[3] | CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263. |
[4] | LIU Yufei, XIAO Yanhui, TIAN Huawei. PRNU Fingerprint Purification Algorithm for Open Environment [J]. Computer Science, 2025, 52(6): 187-199. |
[5] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[6] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[7] | TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213. |
[8] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[9] | HE Liren, PENG Bo, CHI Mingmin. Unsupervised Multi-class Anomaly Detection Based on Prototype Reverse Distillation [J]. Computer Science, 2025, 52(2): 202-211. |
[10] | LIU Yanlun, XIAO Zheng, NIE Zhenyu, LE Yuquan, LI Kenli. Case Element Association with Evidence Extraction for Adjudication Assistance [J]. Computer Science, 2025, 52(2): 222-230. |
[11] | LIU Changcheng, SANG Lei, LI Wei, ZHANG Yiwen. Large Language Model Driven Multi-relational Knowledge Graph Completion Method [J]. Computer Science, 2025, 52(1): 94-101. |
[12] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[13] | HE Zhilin, GU Tianhao, XU Guanhua. Few-shot Semi-supervised Semantic Image Translation Algorithm Based on Prototype Correction [J]. Computer Science, 2024, 51(8): 224-231. |
[14] | TIAN Sicheng, HUANG Shaobin, WANG Rui, LI Rongsheng, DU Zhijuan. Contrastive Learning-based Prompt Generation Method for Large-scale Language Model ReverseDictionary Task [J]. Computer Science, 2024, 51(8): 256-262. |
[15] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
|