Computer Science ›› 2019, Vol. 46 ›› Issue (11A): 236-240.

• Pattern Recognition & Image Processing • Previous Articles     Next Articles

Brachial Plexus Ultrasound Image Optimization Based on Deep Learning and Adaptive Contrast Enhancement

YANG Tong1,2, ZHANG Shan-shan1,2, JIANG Fang-zhou1,2, LI Yi-fei1,2, YU Ge-hao1,2, ZHAO Di1   

  1. (Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China)1;
    (Beijing University of Posts and Telecommunications,Beijing 100089,China)2
  • Online:2019-11-10 Published:2019-11-20

Abstract: In modern medicine,the image of the brachial plexus segmentation and recognition is optimized by contrast enhancement to help the physician identify the disease and tumor.Brachial plexus block is a commonly used method of local anesthesia in upper limb surgery and postoperative care.In order to accurately determine the position of thebrachialplexus,the hospital extensively applies ultrasound equipment to detect and locate the nervous system.This paper described the accurate recognition and segmentation of brachial plexus in ultrasound dynamic images based on deeplear-ning and neural network,and optimized the display of ultrasound images through adaptive contrast enhancement in the cut-out images.The experiment data come from the Beijing Jishuitan Hospital,which are divided into ultrasound images of patients and corresponding pictures of benign malignancies.The enhanced contrast algorithm was used to process the extracted features.The experimental results show that this algorithm enhances the contrast of the image and the accuracy of the displayed content.

Key words: Adaptive enhancement contrast algorithm, Brachial plexus, Convolution and neural network, Deep learning, Image process, Ultrasound image

CLC Number: 

  • TN399
[1]金烈烈.臂丛神经的超声影像学研究[J].中华手外科杂志,2007,23(4):248-251.
[2]吴道珠.高频超声对臂丛神经显像和定位的价值[J].中华超声影像学杂志,2006,15(6):449-452.
[3]CASATI A,DANELLI G,BACIARELLO M,et al.A prospective randomized comparison between ultrasound and nerve stimulation guidance for multiple injection axillary brachial eels block[J].Anesthesiology,2007,106:992-996.
[4]劳杰,何继银,顾玉东,等.创伤性臂丛神经损伤合并肩袖及肱二头肌长头腱损伤的超声诊断[J].中华手外科杂志,2006,22:l44-l45.
[5]曾炜,王弘士,朱世亮,等.颈部颈丛和臂丛神经鞘瘤的彩色多普勒超声定位诊断[J].中国超声医学杂志,2000,16:819-822.
[6]李丽玮.基于自适应对比度增强和深度 CNN 的脂肪肝 B 超影像诊断[J].计算机应用,2018(S2).
[7]BENGIO Y S.Learning Deep Architectures for AI[J].Machine Learning,2009,2(1):1-127.
[8]王振,高茂庭.基于卷积神经网络的图像识别算法设计与实现[D].上海:上海海事大学,2015.
[9]柴睿,林岳,杨桐.基于SegNet模型的臂丛神经超声图像分割[J].计算机工程,2017.
[10]李彦冬,郝宗波,雷航.卷积神经网络研究综述[J].计算机应用,2016,36(9):2508-2515,2565.
[11]朱其刚,朱志强.基于自适应邻域灰度直方图均衡的超声内窥镜图像增强[J].山东科技大学学报(自然科学版),2004,23(3).
[12]张志龙,李吉成,沈振康.一种保持图像细节的直方图均衡新算法[J].计算机工程与科学,2006,28(5):36239.
[13]上官伟,李金.综合运用灰度变换方法改善超声医学图像质量[J].应用科技,2005,32(11):40243.
[14]刘丽娜.超声定量技术诊断弥漫性脂肪肝的研究[D].广州:南方医科大学,2014.
[15]康伟.脂肪肝医学超声图像定量分析的研究[D].大连:大连理工大学,2007.
[1] RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207.
[2] TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305.
[3] XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171.
[4] WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293.
[5] HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329.
[6] JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335.
[7] SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177.
[8] HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78.
[9] CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126.
[10] HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163.
[11] ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169.
[12] SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235.
[13] ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383.
[14] WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423.
[15] MAO Dian-hui, HUANG Hui-yu, ZHAO Shuang. Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance [J]. Computer Science, 2022, 49(6A): 523-530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!