Computer Science ›› 2020, Vol. 47 ›› Issue (1): 102-109.doi: 10.11896/jsjkx.190600060
• Database & Big Data & Data Science • Previous Articles Next Articles
DONG Ming-gang1,2,JIANG Zhen-long1,JING Chao1,2
CLC Number:
[1]HE H,GARCIA E A.Learning from Imbalanced Data [J]. IEEE Transactions on Knowledge & Data Engineering,2009,21(9):1263-1284. [2]KRAWCZYK,BARTOSZ.Learning from imbalanced data:open challenges and future directions [J].Progress in Artificial Intelligence,2016,5(4):221-232. [3]LI Y X,CHAI Y,HU Y Q,et al.Review of imbalanced data classification methods[J].Control and Decision,2019,34(4):673-688. [4]ZHAO N,ZHANG X F,ZHANG L J.Overview of Imbalanced Data Classification[J].Computer Science,2018,45(S1):22-27,57. [5]LI Y,LIU Z D,ZHANG H J.Review on ensemble algorithms for imbalanced data classification[J].Application Research of Computers,2014,31(5):1287-1291. [6]GUO H X,LI Y J,JENNIFER S,et al.Learning from class-imbalanced data:Review of methods and applications [J].Expert Systems with Applications,2017,73:220-239. [7]MIAO Z M,ZHAO L W,TIAN S W,et al.Class Imbalance Learning for Identifying NLOS in UWB Positioning[J].Journal of Signal Processing,2016,32(1):8-13. [8]XIA P P,ZHANG L.Application of Imbalanced Data Learning Algorithms to Similarity Learning[J].Pattern Recognition and Artificial Intelligence | Patt Recog Artif Intell,2014,27(12):1138-1145. [9]WEI W W,LI J J,GAO L B.Effective detection of sophisticated online banking fraud on extremely;imbalanced data[J].World Wide Web-internet & Web Information Systems,2013,16(4):449-475. [10]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:Synthetic Minority Over-sampling Technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357. [11]HE H,BAI Y,GARCIA E A,et al.ADASYN:Adaptive Synthetic Sampling Approach for Imbalanced Learning[C]∥IEEE International Joint Conference on Neural Networks,2008(IJCNN 2008).IEEE,2008:1322-1328. [12]BARUA S,ISLAM M M,YAO X,et al.MWMOTE-Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(2):405-425. [13]NEKOOEIMEHR I,LAI-YUEN S K.Adaptive semi-unsuper- vised weighted oversampling (A-SUWO) for imbalanced datasets[J].Expert Systems with Applications,2016,46:405-416. [14]PUNTUMAPON K,RAKTHAMAMON T,WAIYAMAI K. Clusterbased minority over-sampling for imbalanced datasets[J].IEICE TRANSACTIONS on Information and Systems,2016,99(12):3101-3109. [15]HAN H,WANG W Y,MAO B H.Borderline-SMOTE:A New Over-Sampling Method in Imbalanced Data Sets Learning[M]∥Advances in Intelligent Computing.Springer Berlin Heidelberg,2005:878-887. [16]ANAND R,MEHROTRA K,MOHAN C K,et al.Efficient classification for multiclass problems using modular neural networks[J].IEEE Transactions on Neural Networks,1995,6(1):117-124. [17]ZHU T,LIN Y,LIU Y.Synthetic minority oversampling technique for multiclass imbalance problems [J].Pattern Recognition,2017,72:327-340. [18]ABDI L,HASHEMI S.To combat multi-class imbalanced problems by means of over-sampling techniques[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(1):238-251. [19]YANG X,KUANG Q,ZHANG W,et al.AMDO:An Over-Sampling Technique for Multi-Class Imbalanced Problems[J].IEEE Transactions on Knowledge & Data Engineering,2018,30(9):1672-1685. [20]CIESLAK D A,CHAWLA N V.Learning Decision Trees for Unbalanced Data[C]∥Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin:Sprin-ger,2008:241-256. [21]CIESLAK D A,HOENS T R,CHAWLA N V,et al.Hellinger distance decision trees are robust and skew-insensitive[J].Data Mining and Knowledge Discovery,2012,24(1):136-158. [22]UCI.Machine Learning Repository[OL].http://mlr.cs.uma-ss.edu/ml/datasets.html. [23]KEEL Dataset[OL].https://sci2s.ugr.es/keel/category.php?cat=clas&order=name#sub2. [24]HAND D J,TILL R J.A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems[J].Machine Learning,2001,45(2):171-186. [25]COHEN W W.Fast Effective Rule Induction[C]∥Twelfth International Conference on International Conference on Machine Learning.Elsevier,1995:115-123. |
[1] | CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long. Survey of Concept Drift Handling Methods in Data Streams [J]. Computer Science, 2022, 49(9): 14-32. |
[2] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
[3] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[4] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[5] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[6] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[7] | GAO Zhen-zhuo, WANG Zhi-hai, LIU Hai-yang. Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features [J]. Computer Science, 2022, 49(7): 40-49. |
[8] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[9] | ZHANG Hong-bo, DONG Li-jia, PAN Yu-biao, HSIAO Tsung-chih, ZHANG Hui-zhen, DU Ji-xiang. Survey on Action Quality Assessment Methods in Video Understanding [J]. Computer Science, 2022, 49(7): 79-88. |
[10] | DU Li-jun, TANG Xi-lu, ZHOU Jiao, CHEN Yu-lan, CHENG Jian. Alzheimer's Disease Classification Method Based on Attention Mechanism and Multi-task Learning [J]. Computer Science, 2022, 49(6A): 60-65. |
[11] | LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73. |
[12] | DENG Kai, YANG Pin, LI Yi-zhou, YANG Xing, ZENG Fan-rui, ZHANG Zhen-yu. Fast and Transmissible Domain Knowledge Graph Construction Method [J]. Computer Science, 2022, 49(6A): 100-108. |
[13] | HUANG Shao-bin, SUN Xue-wei, LI Rong-sheng. Relation Classification Method Based on Cross-sentence Contextual Information for Neural Network [J]. Computer Science, 2022, 49(6A): 119-124. |
[14] | LIN Xi, CHEN Zi-zhuo, WANG Zhong-qing. Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning [J]. Computer Science, 2022, 49(6A): 144-149. |
[15] | KANG Yan, WU Zhi-wei, KOU Yong-qi, ZHANG Lan, XIE Si-yu, LI Hao. Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution [J]. Computer Science, 2022, 49(6A): 150-158. |
|