Computer Science ›› 2020, Vol. 47 ›› Issue (2): 1-9.doi: 10.11896/jsjkx.190600180
• Database & Big Data & Data Science • Previous Articles Next Articles
JIAN Song-lei,LU Kai
CLC Number:
[1]BENGIO Y,COURVILLE A,VINCENT P.Representation learning:A review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798-1828. [2]HARRIS Z S.Distributional structure[J].Word,1954,10(2/3):146-162. [3]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013. [4]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.ACM,2016:855-864. [5]BENJIO Y.Deep learning of representations for unsupervised and transfer learning[C]∥Proceedings of ICML Workshop on Unsupervised and Transfer Learning.2012:17-36. [6]GOODFELLOW I J,COURVILLE A,BENGIO Y.Spike-and-slab sparse coding for unsupervised feature discovery[J].arXiv:1201.3382,2012. [7]COHEN P,WEST S G,AIKEN L S.Applied multiple regression/correlation analysis for the behavioral sciences[M].Psychology Press,2014. [8]BENJIO Y,LECUN Y.Scaling learning algorithms towards AI[J].Large-scale Kernel Machines,2007,34(5):1-41. [9]JOLLIFFE I.Principal component analysis[M].Springer Berlin Heidelberg,2011. [10]AIZAWA A.An information-theoretic perspective of tf-idf mea-sures[J].Information Processing & Management,2003,39(1):45-65. [11]AHMAD A,DEY L.A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set[J].Pattern Recognition Letters,2007,28(1):110-118. [12]IENCO D,PENSA R G,MEO R.From context to distance: Learning dissimilarity for categorical data clustering[J].ACM Transactions on Knowledge Discovery from Data (TKDD),2012,6(1):1. [13]JIA H,CHEUNG Y,LIU J.A new distance metric for unsupervised learning of categorical data[J].IEEE Transactions on Neural Networks and Learning Systems,2015,27(5):1065-1079. [14]WANG C,CHI C H,ZHOU W,et al.Coupled interdependent attribute analysis on mixed data[C]∥Twenty-Ninth AAAI Conference on Artificial Intelligence.2015. [15]JIAN S,CAO L,PANG G,et al.Embedding-based Representation of Categorical Data by Hierarchical Value Coupling Lear-ning[C]∥IJCAI.2017:1937-1943. [16]JIAN S,PANG G,CAO L,et al.CURE:Flexible Categorical Data Representation by Hierarchical Coupling Learning[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(5):853-866. [17]ZHANG K,WANG Q,CHEN Z,et al.From categorical to numerical:Multiple transitive distance learning and embedding[C]∥Proceedings of the 2015 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathema-tics,2015:46-54. [18]BALASUBRAMANIAN M,SCHWARTZ E L.The isomap algorithm and topological stability[J].Science,2002,295(5552):7. [19]YIN M,GAO J,LIN Z.Laplacian regularized low-rank representation and its applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(3):504-517. [20]HE X,NIYOGI P.Locality preserving projections[C]∥Ad-vances in Neural Information Processing Systems.2004:153-160. [21]CAO S,LU W,Xu Q.Grarep:Learning graph representations with global structural information[C]∥Proceedings of the 24th ACM International on Conference on Information and Know-ledge Management.ACM,2015:891-900. [22]PEROZZI B,AlRFOU R,SKIENA S.Deepwalk:Online learning of social representations[C]∥Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2014:701-710. [23]TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding[C]∥Proceedings of the 24th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2015:1067-1077. [24]WANG D,CUI P,ZHU W.Structural deep network embedding[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:1225-1234. [25]CAO S,LU W,XU Q.Deep neural networks for learning graph representations[C]∥Thirtieth AAAI Conference on Artificial Intelligence.2016. [26]CUI P,WANG X,PEI J,et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(5):833-852. [27]CAI H,ZHENG V W,CHANG K C C.A comprehensive survey of graph embedding:Problems,techniques,and applications[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1616-1637. [28]DEERWESTER S,DUMAIS S T,FURANAS G W,et al.Indexing by latent semantic analysis[J].Journal of the American Society for Information Science,1990,41(6):391-407. [29]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(1):993-1022. [30]HOFMANN T.Probabilistic latent semantic indexing[C]∥ACM SIGIR Forum.ACM,2017,51(2):211-218. [31]WILSON A T,CHEW P A.Term weighting schemes for latent dirichlet allocation[C]∥Human Language Technologies:The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics.Association for Computational Linguistics,2010:465-473. [32]BENGIO Y,DUCHARME R,Vincent P,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3(Feb):1137-1155. [33]PENNINGTON J,SOCHER R,MANNING C.Glove:Global vectors for word representation[C]∥Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing (EMNLP).2014:1532-1543. [34]PETERS M E,NEUMANN M,IYYER M,et al.Deep contextua-lized word representations[J].arXiv:1802.05365,2018. [35]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [36]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]∥Advances in Neural Information Processing Systems.2017:5998-6008. [37]YANG Z,DAI Z,YANG Y,et al.XLNet:Generalized Autoregressive Pretraining for Language Understanding[J].arXiv:1906.08237. [38]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [39]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.2012:1097-1105. [40]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [41]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9. [42]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [43]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-resnet and the impact of residual connections on lear-ning[C]∥Thirty-First AAAI Conference on Artificial Intelligence.2017. [44]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [45]Al-SAFFAR A A M,TAO H,TALAB M A.Review of deep convolution neural network in image classification[C]∥2017 International Conference on Radar,Antenna,Microwave,Electronics,and Telecommunications (ICRAMET).IEEE,2017:26-31. [46]CHEN C,QI F.Review on Development of Convolutional Neural Network and Its Application in Computer Vision[J].Journal of Computer Science,2019,46(3):63-73. [47]DAVID G,AVERBUCH A.SpectralCAT:Categorical spectral clustering of numerical and nominal data[J].Pattern Recognition,2012,45(1):416-433. [48]CAO L.Coupling learning of complex interactions[J].Information Processing & Management,2015,51(2):167-186. [49]CAO L,OU Y,PHILIP S Y.Coupled behavior analysis with applications[J].IEEE Transactions on Knowledge and Data Engineering,2011,24(8):1378-1392. [50]WEI M,CHOW T,CHAN R.Clustering heterogeneous data with k-means by mutual information-based unsupervised feature transformation[J].Entropy,2015,17(3):1535-1548. [51]HUANG Z.Clustering large data sets with mixed numeric and categorical values[C]∥Proceedings of the 1st Pacific-asiaConference on Knowledge Discovery and Data Mining (PAKDD).1997:21-34. [52]CHEN J Y,HE H H.A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data[J].Information Sciences,2016,345:271-293. [53]JI J,PANG W,ZHOU C,et al.A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data[J].Know-ledge-Based Systems,2012,30:129-135. [54]JIA H,CHEUNG Y M.Subspace clustering of categorical and numerical data with an unknown number of clusters[J].IEEE Transactions on Neural Networks and Learning Systems,2017,29(8):3308-3325. [55]HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [56]BALDI P.Autoencoders,unsupervised learning,and deep architectures[C]∥Proceedings of ICML Workshop on Unsupervised and Transfer Learning.2012:37-49. [57]YANG L,JIN R.Distance metric learning:A comprehensive survey[J].Michigan State Universiy,2006,2(2):4. [58]FROME A,SINGER Y,SHA F,et al.Learning globally-consistent local distance functions for shape-based image retrieval and classification[C]∥2007 IEEE 11th International Conference on Computer Vision.IEEE,2007:1-8. [59]CHECHIK G,SHARMA V,SHALIT U,et al.Large scale online learning of image similarity through ranking[J].Journal of Machine Learning Research,2010,11(3):1109-1135. [60]JIAN S,HU L,CAO L,et al.Metric-based auto-instructor for learning mixed data representation[C]∥Thirty-Second AAAI Conference on Artificial Intelligence.2018. [61]LI J,ZHU J,ZHANG B.Discriminative deep random walk for network classification[C]∥Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016,1:1004-1013. [62]TU C,ZHANG W,LIU Z,et al.Max-margin deepwalk:Dis-criminative learning of network representation[C]∥IJCAI.2016:3889-3895. [63]PAN S,WU J,ZHU X,et al.Tri-party deep network representation[C]∥Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.AAAI Press,2016:1895-1901. [64]DAI H,DAI B,SONG L.Discriminative embeddings of latent variable models for structured data[C]∥International Confe-rence on Machine Learning.2016:2702-2711. [65]WEI X,XU L,CAO B,et al.Cross view link prediction by lear-ning noise-resilient representation consensus[C]∥Proceedings of the 26th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:1611-1619. [66]NIEPERT M,AHMED M,KUTZKOV K.Learning convolu-tional neural networks for graphs[C]∥International Conference on Machine Learning.2016:2014-2023. [67]ZHANG D,YIN J,ZHU X,et al.User Profile Preserving Social Network Embedding[C]∥IJCAI.2017:3378-3384. [68]YANG C,LIU Z,ZHAO D,et al.Network representation lear-ning with rich text information[C]∥Twenty-Fourth Internatio-nal Joint Conference on Artificial Intelligence.2015. [69]ZHANG Z,YANG H,BU J,et al.ANRL:Attributed Network Representation Learning via Deep Neural Networks[C]∥IJCAI.2018:3155-3161. [70]TU C,LIU H,LIU Z,et al.Cane:Context-aware network embedding for relation modeling[C]∥Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1722-1731. [71]GAO H,HUANG H.Deep Attributed Network Embedding.[C]∥IJCAI.2018:3364-3370. [72]JIAN S,HU L,CAO L,et al.Evolutionarily learning multi-aspect interactions and influences from network structure and node content[C]∥AAAI-19.2019. [73]CHANG S,HAN W,TANG J,et al.Heterogeneous network embedding via deep architectures[C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.ACM,2015:119-128. [74]ALHARBI B,ZHANG X.Learning from your network of friends:a trajectory representation learning model based on online social ties[C]∥2016 IEEE 16th International Conference on Data Mining (ICDM).IEEE,2016:781-786. [75]ZHANG Q,WANG H.Not all links are created equal:An adaptive embedding approach for social personalized ranking[C]∥Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2016:917-920. [76]ODENA A,OLAH C,SHLENS J.Conditional image synthesis with auxiliary classifier gans[C]∥Proceedings of the 34th International Conference on Machine Learning.JMLR,2017:2642-2651. [77]HIGGINS I,MATTHEY L,PAL A,et al.Beta-vae:Learning basic visual concepts with a constrained variational framework[C]∥International Conference on Learning Representations.2017,3. [78]CHEN X,DUAN Y,HOUTHOOFT R,et al.Infogan:Inter-pretable representation learning by information maximizing ge-nerative adversarial nets[C]∥Advances in Neural Information Processing Systems.2016:2172-2180. [79]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]∥Advances in Neural Information Processing Systems.2014:2672-2680. [80]RADFORD A,METZ L,CHINTALA S.Unsupervised repre-sentation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [81]REZENDE D J,MOHAMED S,WIERSTRA D.Stochastic Backpropagation and Approximate Inference in Deep Generative Models[C]∥International Conference on MachineLear-ning.2014:1278-1286. [82]LIU Y C,YEH Y Y,FU T C,et al.Detach and adapt:Learning cross-domain disentangled deep representation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8867-8876. [83]GONZALEZ-GARCIA A,VAN DE WEIJER J,BENGIO Y.Ima-ge-to-image translation for cross-domain disentanglement[C]∥Advances in Neural Information Processing Systems.2018:1287-1298. [84]LIU A H,LIU Y C,YEH Y Y,et al.A unified feature disentangler for multi-domain image translation and manipulation[C]∥Advances in Neural Information Processing Systems.2018:2590-2599. JIANS,HU L,CAO L,et al.Representation Learning with Multiple Lipschitz-constrained Alignments on Partially-labeled Cross-domain Data ∥34th AAAI Conference on Artificial Intelligence.2020. [86]BALTRUAITIS T,AHUJA C,MORENCY L P.Multimodal machine learning:A survey and taxonomy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(2):423-443. [87]TAIGMAN Y,POLYAK A,WOLF L.Unsupervised cross-do-main image generation[J].arXiv:1611.02200,2016. [88]VENDROV I,KIROS R,FIDLER S,et al.Order-embeddings of images and language[J].arXiv:1511.06361,2015. [89]ANTOL S,AGRAWAL A,LU J,et al.Vqa:Visual question an-swering[C]∥Proceedings of the IEEE International Conference on Computer Vision.2015:2425-2433. [90]OUYANG W,CHU X,WANG X.Multi-source deep learning for human pose estimation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:2329-2336. [91]ZHANG H,HU Z,DENG Y,et al.Learning concept taxonomies from multi-modal data[J].arXiv:1606.09239,2016. [92]ZHANG J,PENG Y,YUAN M.Unsupervised generative adversarial cross-modal hashing[C]∥Thirty-Second AAAI Confe-rence on Artificial Intelligence.2018. [93]VUKOTIC V,RAYMOND C,GRAVIER G.Bidirectional joint representation learning with symmetrical deep neural networks for multimodal and crossmodal applications[C]∥Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval.ACM,2016:343-346. [94]WANG W,OOI B C,YANG X,et al.Effective multi-modal retrieval based on stacked auto-encoders[J].Proceedings of the VLDB Endowment,2014,7(8):649-660. [95]FROME A,CORRADO G S,SHLENS J,et al.Devise:A deep visual-semantic embedding model[C]∥Advances in Neural Information Processing Systems.2013:2121-2129. [96]KIROS R,SALAKHUTDINOV R,ZEMEL R S.Unifying vi-sual-semantic embeddings with multimodal neural language models[J].arXiv:1411.2539,2014. [97]WANG L,LI Y,HUANG J,et al.Learning two-branch neural networks for image-text matching tasks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(2):394-407. [98]WU F,LU X,SONG J,et al.Learning of multimodal representations with random walks on the click graph[J].IEEE Transactions on Image Processing,2015,25(2):630-642. [99]KANG C,XIANG S,LIAO S,et al.Learning consistent feature representation for cross-modal multimedia retrieval[J].IEEE Transactions on Multimedia,2015,17(3):370-381. [100]NIAN F,BAO B K,LI T,et al.Multi-Modal Knowledge Representation Learning via Webly-Supervised Relationships Mining[C]∥Proceedings of the 25th ACM international conference on Multimedia.ACM,2017:411-419. |
[1] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[2] | HUANG Li, ZHU Yan, LI Chun-ping. Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(9): 76-82. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang. Automated Container Terminal Oriented Travel Time Estimation of AGV [J]. Computer Science, 2022, 49(9): 208-214. |
[5] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[6] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[7] | LI Zong-min, ZHANG Yu-peng, LIU Yu-jie, LI Hua. Deformable Graph Convolutional Networks Based Point Cloud Representation Learning [J]. Computer Science, 2022, 49(8): 273-278. |
[8] | ZHANG Guang-hua, GAO Tian-jiao, CHEN Zhen-guo, YU Nai-wen. Study on Malware Classification Based on N-Gram Static Analysis Technology [J]. Computer Science, 2022, 49(8): 336-343. |
[9] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[10] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[11] | LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92. |
[12] | ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99. |
[13] | WANG Fei, HUANG Tao, YANG Ye. Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion [J]. Computer Science, 2022, 49(6A): 784-789. |
[14] | XIAO Zhi-hong, HAN Ye-tong, ZOU Yong-pan. Study on Activity Recognition Based on Multi-source Data and Logical Reasoning [J]. Computer Science, 2022, 49(6A): 397-406. |
[15] | HUANG Pu, DU Xu-ran, SHEN Yang-yang, YANG Zhang-jing. Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation [J]. Computer Science, 2022, 49(6A): 407-411. |
|