Computer Science ›› 2022, Vol. 49 ›› Issue (3): 99-104.doi: 10.11896/jsjkx.210200170
• Database & Big Data & Data Science • Previous Articles Next Articles
WANG Mei-ling, LIU Xiao-nan, YIN Mei-juan, QIAO Meng, JING Li-na
CLC Number:
[1]KIM D,PARK C,OH J,et al.Convolutional matrix factorization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems.ACM,2016:233-240. [2]WANG C,BLEI D M.Collaborative Topic Modeling for Recommending Scientific Articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2011:21-24. [3]MCAULEY J,LESKOVEC J.Hidden factors and hidden topics:understanding rating dimensions with review text[C]//Procee-dings of the ACM Conference on Recommender Systems.ACM,2013:165-172. [4]BAO Y,FANG H,ZHANG J.Topicmf:Simultaneously exploiting ratings and reviews for recommendation[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.AAAI Press,2014:2-8. [5]TAN Y,ZHANG M,LIU Y,et al.Rating-boosted latent topics:Understanding users and items with ratings and reviews[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.2016:2640-2646. [6]LING G,LYU M R,KING I.Ratings meet reviews,a combined approach to recommend[C]//Proceedings of the ACM Confe-rence on Recommender Systems (RecSys).ACM,2014:105-112. [7]CATHERINE R,COHEN W.Transnets:Learning to transform for recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems.ACM,2017:288-296. [8]BLEI D M,NG A,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(4/5):993-1022. [9]LEE D D,SEUNG H S.Algorithms for Non-negative MatrixFactorization[C]//International Conference on Neural Information Processing Systems.MIT Press,2000:556-562. [10]ZHENG L,NOROOZI V,YU P S.Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.ACM,2017:425-434. [11]KIM D,PARK C,OH J,et al.Convolutional Matrix Factorization for Document Context-Aware Recommendation[C]//ACM Conference.ACM,2016:233-240. [12]SEO S,HUANG J,YANG H,et al.Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction[C]//The Eleventh ACM Conference.ACM,2017:297-305. [13]WU L,QUAN C,LI C,et al.A context-aware user-item representation learning for item recommendation[J].ACM Transactions on Information Systems (TOIS),2019,37(2):1-29. [14]DAI A M,LE Q V.Semi-supervised Sequence Learning[J].MIT Press,2015. [15]CHEN C,ZHANG M,LIU Y,et al.Neural attentional rating regression with review-level explanations[C]//Proceedings of the 2018 World Wide Web Conference.2018:1583-1592. [16]TAY Y,LUU A T,HUI S C.Multi-pointer co-attention net-works for recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:2309-2318. [17]CHEN X,ZHANG Y,QIN Z.Dynamic Explainable Recommendation Based on Neural Attentive Models[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33:53-60. [18]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[J].arXiv:1810.04805,2018. [19]CAO S,YANG N,LIU Z.Online news recommender based on stacked auto-encoder[C]//ACIS 16th International Conference on Computer and Information Science (ICIS).IEEE,2017:721-726. [20]WANG H,WANG N,YEUNG D Y.Collaborative Deep Lear-ning for Recommender Systems[C]//KDD 2015.ACM,2015:1235-1244. [21]BAHDANAU D,CHO K,BENGIO Y.Neural Machine Translation by Jointly Learning to Align and Translate[J].arXiv:1409.0473,2014. [22]GEHRING J,AULI M,GRANGIER D,et al.Convolutional sequence to sequence learning[J].arXiv:1705.03122,2017. [23]BAHDANAU D,CHO K,BENGIO Y.Neural Machine Translation by Jointly Learning to Align and Translate[J].Computer Ence,2014. [24]HERMANN K M,KOCISKY T,GREFENSTETTE E,et al.Teaching machines to read and comprehend[C]//Advances in Neural Information Processing Systems.MIT Press,2015:1693-1701. [25]SEO M,KEMBHAVI A,FARHADI A,et al.Bidirectional attention flow for machine comprehension[J].arXiv:1611.01603,2018. [26]AMODEI D,ANANTHANARAYANAN S,ANUBHAI R,et al.Deep Speech 2:End-to-End Speech Recognition in English and Mandarin[C]//ICML.2015. [27]LU Y,DONG R,SMYTH B.Coevolutionary recommendationmodel:Mutual learning between ratings and reviews[C]//Proceedings of the 2018 World Wide Web Conference.2018:773-782. [28]CHEN J,ZHANG H,HE X,et al.Attentive Collaborative Filtering:Multimedia Recommendation with Item-and Component-Level Attention[C]//International ACM Sigir Conference.ACM,2017:335-344. [29]VASWANI A,SHAZEER N,PARMAR N,et al.AttentioniskCM0lAll You Need[J].arXiv:1706.03762,2017. [30]PETERS M,NEUMANN M,IYYER M,et al.Deep Contextua-lized Word Representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1 (Long Papers).2018. [31]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding with unsupervised learning[R].Technical report,OpenAI,2018. [32]KINGMA D,BA J.Adam:A Method for Stochastic Optimization[J].arXiv:1412.6980,2014. [33]KOREN Y,BELL R,VOLINSKY C.Matrix FactorizationTechniques for Recommender Systems[J].Computer,2009,42(8):30-37. [34]SALAKHUTDINOV R,MNIH A.Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems.2007:1257-1264. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[9] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[10] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[11] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[12] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[13] | WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324. |
[14] | CHU Yu-chun, GONG Hang, Wang Xue-fang, LIU Pei-shun. Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 [J]. Computer Science, 2022, 49(6A): 337-344. |
[15] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
|