Computer Science ›› 2022, Vol. 49 ›› Issue (12): 293-300.doi: 10.11896/jsjkx.220300195
• Artificial Intelligence • Previous Articles Next Articles
YANG Xu-hua, JIN Xin, TAO Jin, MAO Jian-fei
CLC Number:
[1]ROY P K,SINGH J P,BANERJEE S.Deep learning to filter SMS Spam[J].Future Generation Computer Systems,2020,102:524-533. [2]MINAEE S,KALCHBRENNER N,CAMBRIA E,et al.DeepLearning--based Text Classification:A Comprehensive Review[J].ACM Computing Surveys,2021,54(3):1-40. [3]XIONG S F,JI D H.A short text sentiment topic model for product review analysis[J].Acta Automatica Sinica,2016,42(8):1227-1237. [4]JIN L,HE T T.Chinese text classification model based on improved TF-IDF and ABLCNN[J].Computer Science,2021,48(11A):170-175. [5]HARRELL F E.Regression modeling strategies:with applications to linear models,logistic and ordinal regression,and survival analysis[M].New York:Springer,2015. [6]RISH I.An empirical study of the naive Bayes classifier[C]//IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence.2001:41-46. [7]KELLER J M,GRAY M R,GIVENS J A.A fuzzy k-nearest neighbor algorithm[J].IEEE Transactions on Systems,Man,and Cybernetics,1985(4):580-585. [8]SANCHEZ AV D.Advanced support vector machines and kernel methods[J].Neurocomputing,2003,55(1/2):5-20. [9]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013. [10]KIM Y.Convolutional neural networks for sentence classification[J].arXiv:1408.5882,2014. [11]JOHNSON R,TONG Z.Deep Pyramid Convolutional NeuralNetworks for Text Categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:562-570. [12]MIKOLOV T,KARAFIAT M,BURGET L,et al.Recurrentneural network based language modeI[C]//Proceedings of the Annual Conference of the International Speech Communication Association.2010:1045-1048. [13]ZHANG Y,LIU Q,SONG L.Sentence-State LSTM for Text Representation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:317-327. [14]YANG M,ZHAO W,YE J,et al.Investigating capsule networks with dynamic routing for text classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:3110-3119. [15]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [16]JOULIN A,GRAVE E,BOJANOWSKI P,et al.Bag of Tricks for Efficient Text Classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics:Volume 2,Short Papers.2017:427-431. [17]ZHANG X,ZHAO J,LECUN Y.Character-level convolutional networks for text classification[J].Advances in Neural Information Processing Systems,2015,28:649-657. [18]TANG D,QIN B,LIU T.Document modeling with gated recurrent neural network for sentiment classification[C]//Procee-dings of the Conference on Empirical Methods in Natural Language Processing.2015:1422-1432. [19]LAI S,XU L,LIU K,et al.Recurrent convolutional neural networks for text classification[C]//Twenty-ninth AAAI Confe-rence on Artificial Intelligence.2015:2267-2273. [20]WANG R,LI Z,CAO J,et al.Convolutional Recurrent Neural Networks for Text Classification[C]//2019 International Joint Conference on Neural Networks.2019:1-6. [21]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [22]GAO H,CHEN Y,JI S.Learning Graph Pooling and HybridConvolutional Operations for Text Representations[C]//World Wide Web Conference.2019:2743-2749. [23]YAO L,MAO C,LUO Y.Graph convolutional networks fortext classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:7370-7377. [24]PENG H,LI J,HE Y,et al.Large-scale hierarchical text classification with recursively regularized deep graph-cnn[C]//Proceedings of the 2018 World Wide Web Conference.2018:1063-1072. [25]WU M,PAN S,ZHU X,et al.Domain-adversarial graph neural networks for text classification[C]//2019 IEEE International Conference on Data Mining.IEEE,2019:648-657. [26]IVANOVA A,OEPEN S,ØVRELID L.Survey on parsing three dependency representations for English[C]//51st Annual Mee-ting of the Association for Computational Linguistics Procee-dings of the Student Research Workshop.2013:31-37. [27]CHEN M,WEINBERGER K Q,SHA F.An alternative textrepresentation to TF-IDF and Bag-of-Words[J].arXiv:1301.6770,2013. [28]ZHU Y,LI L,LUO L.Learning to classify short text with topic model and external knowledge[C]//International Conference on Knowledge Science,Engineering and Management.2013:493-503. [29]MA X,JIN R,PAIK J Y,et al.LargeScale Text Classification with Efficient Word Embedding[C]//International Conference on Mobile and Wireless Technology.2017:465-469. [30]BENGIO Y,DUCHARME R,VINCENT P,et al.A neuralprobabilistic language model[J].The Journal of Machine Lear-ning Research,2003,3:1137-1155. [31]LE Q,MIKOLOV T.Distributed representations of sentencesand documents[C]//International Conference on Machine Learning.PMLR,2014:1188-1196. [32]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing.2014:1532-1543. [33]TAN T,PHIENTHRAKUL T.Sentiment Classification Using Document Embeddings Trained with Cosine Similarity[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics:Student Research Workshop.2019:407-414. [34]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2014:701-710. [35]GOYAL P,FERRARA E.Graph embedding techniques,applica-tions,and performance:A survey[J].Knowledge-Based Systems,2018,151:78-94. [36]ZHANG R,LI J T.A Survey of Research on Scene Segmentation Algorithms Based on Deep Learning[J].Computer Research and Development,2020,57(4):859-875. [37]FEI H,LI F,LI B,et al.Encoder-decoder based unified semantic role labeling with label-aware syntax[C]//Proceedings of AAAI National Conference on Artificial Intelligence.2021:1479-1488. [38]LI Y,JIN R,LUO Y.Classifying relations in clinical narratives using segment graph convolutional and recurrent neural networks(Seg-GCRNs)[J].Journal of the American Medical Informatics Association,2019,26(3):262-268. [39]BASTINGS J,TITOV I,AZIZ W,et al.Graph convolutional encoders for syntax-aware neural machine translation[J].arXiv:1704.04675,2017. [40]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [41]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[J].arXiv:1706.02216,2017. [42]KIM D,OH A.How to find your friendly neighborhood:Graph attention design with self-supervision[J].arXiv:2204.04879,2022. [43]ALON U,YAHAV E.On the bottleneck of graph neural networks and its practical implications[J].arXiv:2006.05205,2020. [44]ZHAO T,LIU Y,NEVES L,et al.Data Augmentation forGraph Neural Networks[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2021:11015-11023. [45]LUONG M T,PHAM H,MANNING C D.Effective approaches to attention-based neural machine translation[J].arXiv:1508.04025,2015. [46]CHO K,COURVILLE A,BENGIO Y.Describing multimediacontent using attention-based encoder-decoder networks[J].IEEE Transactions on Multimedia,2015,17(11):1875-1886. [47]ZENG Y F,LAN T,WU Z F,et al.Aspect-level sentiment classification model based on dual-memory attention[J].Chinese Journal of Computers,2019,8:1845-1857. [48]SUKHBAATAR S,WESTON J,FERGUS R.End-to-end me-mory networks[C]//Proceedings of the Advances in Neural Information Processing Systems.2015:2440-2448. [49]WANG W,PAN S J,DAHLMEIER D,et al.Coupled multi-la-yer attentions for co-extraction of aspect and opinion terms[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [50]YANG Z,YANG D,DYER C,et al.Hierarchical attention networks for document classification[C]//Proceedings of the 2016 CONFERENce of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:1480-1489. [51]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the Advances in Neural Information Processing Systems.2017:5998-6008. [52]SUN Z,HUANG S,WEI H R,et al.Generating diverse translation by manipulating multi-head attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:8976-8983. [53]MISRA D,NALAMADA T,ARASANIPALAI A U,et al.Rotate to attend:Convolutional triplet attention module[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:3139-3148. [54]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24. [55]DAI Y,SHOU L,GONG M,et al.Graph Fusion Network for Text Classification[J].Knowledge-Based Systems,2022,236:107659. [56]GUO B,ZHANG C,LIU J,et al.Improving text classification with weighted word embeddings via a multi-channel TextCNN model[J].Neurocomputing,2019,363:366-374. [57]LIU H,CHEN G,LI P,et al.Multi-label text classification via joint learning from label embedding and label correlation[J].Neurocomputing,2021,460:385-398. [58]XU J,CAI Y,WU X,et al.Incorporating context-relevant concepts into convolutional neural networks for short text classification[J].Neurocomputing,2020,386:42-53. [59]WU Y,LI J,WU J,et al.Siamese capsule networks with global and local features for text classification[J].Neurocomputing,2020,390:88-98. [60]SHEN D,WANG G,WANG W,et al.Baseline needs more love:On simple word-embedding-based models and associated pooling mechanisms[J].arXiv:1805.09843,2018. |
[1] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[2] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[3] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[4] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24. |
[7] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[8] | DENG Kai, YANG Pin, LI Yi-zhou, YANG Xing, ZENG Fan-rui, ZHANG Zhen-yu. Fast and Transmissible Domain Knowledge Graph Construction Method [J]. Computer Science, 2022, 49(6A): 100-108. |
[9] | KANG Yan, WU Zhi-wei, KOU Yong-qi, ZHANG Lan, XIE Si-yu, LI Hao. Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution [J]. Computer Science, 2022, 49(6A): 150-158. |
[10] | SHAO Xin-xin. TI-FastText Automatic Goods Classification Algorithm [J]. Computer Science, 2022, 49(6A): 206-210. |
[11] | XIONG Zhong-min, SHU Gui-wen, GUO Huai-yu. Graph Neural Network Recommendation Model Integrating User Preferences [J]. Computer Science, 2022, 49(6): 165-171. |
[12] | DENG Zhao-yang, ZHONG Guo-qiang, WANG Dong. Text Classification Based on Attention Gated Graph Neural Network [J]. Computer Science, 2022, 49(6): 326-334. |
[13] | YU Ai-xin, FENG Xiu-fang, SUN Jing-yu. Social Trust Recommendation Algorithm Combining Item Similarity [J]. Computer Science, 2022, 49(5): 144-151. |
[14] | LI Yong, WU Jing-peng, ZHANG Zhong-ying, ZHANG Qiang. Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism [J]. Computer Science, 2022, 49(4): 43-48. |
[15] | CAO He-xin, ZHAO Liang, LI Xue-feng. Technical Research of Graph Neural Network for Text-to-SQL Parsing [J]. Computer Science, 2022, 49(4): 110-115. |
|