Computer Science ›› 2022, Vol. 49 ›› Issue (9): 162-171.doi: 10.11896/jsjkx.220500204
• Artificial Intelligence • Previous Articles Next Articles
XU Yong-xin1,2, ZHAO Jun-feng1,2,3, WANG Ya-sha1,2,3, XIE Bing1,2,3, YANG Kai1,2,3
CLC Number:
[1]NOY N,GAO Y,JAIN A,et al.Industry-scale knowledgegraphs:lessons and challenges[J].Communications of the ACM,2019,62(8):36-43. [2]SINGHAL A.Introducing the Knowledge Graph:things,notstrings[EB/OL].Google Blog.https://www.blog.google/products/search/introducing-knowledge-graph-things-not/. [3]PITTMAN R J,SRIVASTAVA A,HEWAVITHARANA S,et al.2017.Cracking the Code on Conversational Commerce[EB/OL].eBay Blog.https://www.ebayinc.com/stories/news/cracking-the-code-on-conversationalcommerce/. [4]HAMAD F,LIU I,ZHANG X X.Food Discovery with UberEats:Building a Query Understanding Engine[EB/OL].Uber Engineering Blog.https://eng.uber.com/uber-eats-query-understanding/. [5]KRISHNAN A.Making search easier:How Amazon's Product Graph is helping customers find products more easily[EB/OL].Amazon Blog.https://blog.aboutamazon.com/innovation/making-search-easier. [6]LIU Z Y,SUN M S,LIN Y K,et al.Knowledge Representation Learning:A Review[J].Journal of Computer Research and Development,2016,53(2):247-261. [7]JIANG T,LIU T,GE T,et al.Encoding temporal information for time-aware link prediction[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Proces-sing.2016:2350-2354. [8]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Neural Information Processing Systems(NIPS).2013:1-9. [9]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014:1112-1119. [10]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015:2181-2187. [11]JI G,LIU K,HE S,et al.Knowledge graph completion withadaptive sparse transfer matrix[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016:985-991. [12]ZHANG W,PAUDEL B,WANG L,et al.Iteratively learningembeddings and rules for knowledge graph reasoning[C]//The World Wide Web Conference.2019:2366-2377. [13]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//ICML.2011:809-816. [14]YANG B,YIH W,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[J].arXiv:1412.6575,2014. [15]TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Conference on Machine Learning.PMLR,2016:2071-2080. [16]GARCÍA-DURÁN A,DUMANČIĆS,NIEPERT M.Learning sequence encoders for temporal knowledge graph completion[J].arXiv:1809.03202,2018. [17]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graph embedding by relational rotation in complex space[J].arXiv:1902.10197,2019. [18]SADEGHIAN A,ARMANDPOUR M,COLAS A,et al.ChronoR:Rotation Based Temporal Knowledge Graph Embedding[J].arXiv:2103.10379,2021. [19]HAWKES A G.Point spectra of some mutually exciting point processes[J].Journal of the Royal Statistical Society:Series B(Methodological),1971,33(3):438-443. [20]HAWKES A G.Spectra of some self-exciting and mutually exciting point processes[J].Biometrika,1971,58(1):83-90. [21]HAWKES A G,OAKES D.A cluster process representation of a self-exciting process[J].Journal of Applied Probability,1974,11(3):493-503. [22]OGATA Y.Space-time point-process models for earthquake occurrences[J].Annals of the Institute of Statistical Mathematics,1998,50(2):379-402. [23]BACRY E,IUGA A,LASNIER M,et al.Market impacts and the life cycle of investors orders[J].Market Microstructure and Liquidity,2015,1(2):1550009. [24]BACRY E,JAISSON T,MUZY J F.Estimation of slowly de-creasing hawkes kernels:application to high-frequency order book dynamics[J].Quantitative Finance,2016,16(8):1179-1201. [25]CHANDRA R,ZHANG M.Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction[J].Neurocomputing,2012,86:116-123. [26]TRIVEDI R,FARAJTABAR M,WANG Y,et al.Know-evolve:Deep reasoning in temporal knowledge graphs[J].arXiv:1705.05742,2017. [27]JIN W,QU M,JIN X,et al.Recurrent Event Network:Autoregressive Structure Inference over Temporal Knowledge Graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:6669-6683. [28]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Euro-pean Semantic Web Conference.Cham:Springer,2018:593-607. [29]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [30]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [31]LI Z,JIN X,LI W,et al.Temporal Knowledge Graph Reasoning Based on Evolutional Representation Learning[J].arXiv:2104.10353,2021. [32]CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].arXiv:1412.3555,2014. [33]ZHU C,CHEN M,FAN C,et al.Learning from History:Mode-ling Temporal Knowledge Graphs with Sequential Copy-Generation Networks[J].arXiv:2012.08492,2020. [34]DASGUPTA S S,RAY S N,TALUKDAR P.Hyte:Hyper-plane-based temporally aware knowledge graph embedding[C]//Proceedings of the 2018 Conference on Empirical Me-thods in Natural Language Processing.2018:2001-2011. [35]JAIN P,RATHI S,CHAKRABARTI S.Temporal Knowledge Base Completion:New Algorithms and Evaluation Protocols[J].arXiv:2005.05035,2020. [36]GOEL R,KAZEMI S M,BRUBAKER M,et al.Diachronic embedding for temporal knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:3988-3995. [37]GARG S,SHARMA N,JIN W,et al.Temporal attribute prediction via joint modeling of multi-relational structure evolution[J].arXiv:2003.03919,2020. [38]LIN Y,LIU Z,LUAN H,et al.Modeling relation paths for representation learning of knowledge bases[J].arXiv:1506.00379,2015. [39]GUO S,WANG Q,WANG L,et al.Knowledge graph embedding with iterative guidance from soft rules[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:4816-4823. [40]ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:353-362. [41]WANG H,ZHANG F,HOU M,et al.SHINE:signed heterogeneous information network embedding for sentiment link prediction[C]//Proceedings of the 11th ACM International Confe-rence on Web Search and Data Mining.2018:592-600. [42]HUANG J,ZHAO W X,DOU H,et al.Improving sequential recommendation with knowledge-enhanced memory networks[C]//Proceedings of the 41st International ACM SIGIR Confe-rence on Research & Development in Information Retrieval.2018:505-514. [43]WANG H,ZHANG F,WANG J,et al.RippleNet:propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Confe-rence on Information and Knowledge Management.2018:417-426. [44]YU X,REN X,SUN Y,et al.Personalized entity recommendation:a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.2014:283-292. [45]SUN Z,YANG J,ZHANG J et al.Recurrent knowledge graph embedding for effffective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems.2018:297-305. [46]WANG X,WANG D,XU C,et al.Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the AAAI Conference on Artifificial Intelligence.2019:5329-5336. [47]SONG W,DUAN Z,YANG Z,et al.Explainable knowledgegraph-based recommendation via deep reinforcement learning[J].arXiv:1906.09506,2019. [48]HUANG X,FANG Q,QIAN S,et al.Explainable interaction-driven user modeling over knowledge graph for sequential reco-mmendation[C]//Proceedings of the 27th ACM International Conference on Multimedia.2019:548-556. [49]WANG H,ZHANG F,WANG J,et al.Exploring high-orderuser preference on the knowledge graph for recommender systems[J].ACM Transactions on Information Systems,2019,37:1-26. [50]WANG M,LIU M,LIU J,et al.Safe medicine recommendation via medical knowledge graph embedding[J].arXiv:1710.05980,2017. [51]PALUMBO E,RIZZO G,TRONCY R.Entity2rec:learninguser-item relatedness from knowledge graphs for top-n item re-commendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems.2017:32-36. |
[1] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[2] | HUANG Li, ZHU Yan, LI Chun-ping. Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(9): 76-82. |
[3] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[4] | WU Zi-yi, LI Shao-mei, JIANG Meng-han, ZHANG Jian-peng. Ontology Alignment Method Based on Self-attention [J]. Computer Science, 2022, 49(9): 215-220. |
[5] | KONG Shi-ming, FENG Yong, ZHANG Jia-yun. Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph [J]. Computer Science, 2022, 49(9): 221-227. |
[6] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[7] | LI Zong-min, ZHANG Yu-peng, LIU Yu-jie, LI Hua. Deformable Graph Convolutional Networks Based Point Cloud Representation Learning [J]. Computer Science, 2022, 49(8): 273-278. |
[8] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[9] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[10] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[11] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[12] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[13] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[14] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[15] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
|