计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 292-298.doi: 10.11896/jsjkx.200500133
程思伟1, 葛唯益2, 王羽2, 徐建1
CHENG Si-wei1, GE Wei-yi2, WANG Yu2, XU Jian1
摘要: 触发词检测是事件抽取的一项基本任务,该任务涉及对触发词进行识别和分类。目前,已有工作主要存在两方面的问题:1)用于触发词检测的神经网络模型只考虑了句子的顺序表示,且通过顺序建模的方法在捕捉长距离依赖关系时效率较低;2)基于表示的方法虽然解决了手动提取特征的问题,但用作初始训练特征的词向量对句子的表示程度有所欠缺,难以捕捉深层的双向表征。因此,文中提出了一种基于BERT模型和GCN网络的触发词检测模型BGCN,该模型通过引入BERT词向量来强化特征表示,并引入句法结构来捕捉长距离依赖,对事件触发词进行检测。实验结果表明,所提方法在ACE2005数据集上的表现优于其他现有的神经网络模型。
中图分类号:
[1]GRISHMAN R,WESTBROOK D,MEYERS A.NYU’s Eng-lish ACE 2005 system description[J/OL].ACE,2005,5.http://www.researchgate.net/publication/228638184_NYU’s_English_ACE_2005_system_description. [2]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013. [3]PENNINGTON J,SOCHER R,MANNING C.Glove:Globalvectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing(EMNLP).2014:1532-1543. [4]PETERS M E,NEUMANN M,IYYER M,et al.Deep contex-tualized word representations[J].arXiv:1802.05365,2018. [5]LIU S,LIU K,HE S,et al.A probabilistic soft logic based approach to exploiting latent and global information in event classification[C]//Thirtieth AAAI Conference on Artificial Intelligence.2016. [6]LI X,NGUYEN T H,CAO K,et al.Improving event detection with abstract meaning representation[C]//Proceedings of the First Workshop on Computing News Storylines.2015:11-15. [7]NGUYEN T H,CHO K,GRISHMAN R.Joint event extraction via recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:300-309. [8]CHEN Y,XU L,LIU K,et al.Event extraction via dynamicmulti-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for ComputationalLinguistics and the 7th International Joint Conference on Natu-ral Language Processing (Volume 1:Long Papers).2015:167-176. [9]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [10]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [11]MARCHEGGIANI D,TITOV I.Encoding sentences with graph convolutional networks for semantic role labeling[J].arXiv:1703.04826,2017. [12]NGUYEN T H,GRISHMAN R.Graph convolutional networks with argument-aware pooling for event detection[C]//Thirty-Second AAAI Conference on Artificial Intelligence.2018. [13]LIU X,LUO Z,HUANG H.Jointly multiple events extraction via attention-based graph information aggregation[J].arXiv:1809.09078,2018. [14]LI Q,JI H,HUANG L.Joint event extraction via structured prediction with global features[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).2013:73-82. [15]ZHANG X F,GUO Z G,LIU S,et al.Self-similarity Clustering Event Detection Based on Triggers Guid [J].Computer Science,2010,27(3):212-214. [16]XU X,LI P F,ZHU Q M.Pattern Filtering and ConversionMethods for Semi-supervised Chinese Event Extraction.[J].Computer Science,2015,42(2):253-255. [17]LIU S,CHENG R,YU X,et al.Exploiting contextual information via dynamic memory network for event detection[J].arXiv:1810.03449,2018. [18]LIU S,LI Y,ZHANG F,et al.Event Detection without Triggers[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:735-744. [19]ZHANG J,QIN Y,ZHANG Y,et al.Extracting Entities andEvents as a Single Task Using a Transition-Based Neural Model[C]//IJCAI.2019:5422-5428. [20]ORR J W,TADEPALLI P,FERN X.Event detection with neural networks:A rigorous empirical evaluation[J].arXiv:1808.08504,2018. [21]SHA L,QIAN F,CHANG B,et al.Jointly extracting event triggers and arguments by dependency-bridge rnn and tensor-based argument interaction[C]//Thirty-Second AAAI Conference on Artificial Intelligence.2018. [22]LIU S,CHEN Y,LIU K,et al.Exploiting argument information to improve event detection via supervised attention mechanisms[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).2017:1789-1798. [23]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. [24]YAN H R,JIN X L,MENG X B,et al.Event Detection with Multi-Order Graph Convolution and Aggregated Attention[C]//The 9th International Joint Conference on Natural Language Processing.2019:5770-5774. [25]CUI S Y,YU B W,LIU T W,et al.Event Detection with Relation-Aware Graph Convolutional Networks[J].arXiv:2002.10757,2020. [26]PENG H,LI J,GONG Q,et al.Fine-grained event categorization with heterogeneous graph convolutional networks[J].arXiv:1906.04580,2019. [27]DUAN S,HE R,ZHAO W.Exploiting document level information to improve event detection via recurrent neural networks[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1:Long Papers).2017:352-361. [28]LIU J,CHEN Y,LIU K,et al.Event detection via gated multilingual attention mechanism[C]//Thirty-Second AAAI Confe-rence on Artificial Intelligence.2018. |
[1] | 汪鸣, 彭舰, 黄飞虎. 基于多时间尺度时空图网络的交通流量预测模型 Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction 计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188 |
[2] | 于家畦, 康晓东, 白程程, 刘汉卿. 一种新的中文电子病历文本检索模型 New Text Retrieval Model of Chinese Electronic Medical Records 计算机科学, 2022, 49(6A): 32-38. https://doi.org/10.11896/jsjkx.210400198 |
[3] | 康雁, 吴志伟, 寇勇奇, 张兰, 谢思宇, 李浩. 融合Bert和图卷积的深度集成学习软件需求分类 Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution 计算机科学, 2022, 49(6A): 150-158. https://doi.org/10.11896/jsjkx.210500065 |
[4] | 余本功, 张子薇, 王惠灵. 一种融合多层次情感和主题信息的TS-AC-EWM在线商品排序方法 TS-AC-EWM Online Product Ranking Method Based on Multi-level Emotion and Topic Information 计算机科学, 2022, 49(6A): 165-171. https://doi.org/10.11896/jsjkx.210400238 |
[5] | 李健智, 王红玲, 王中卿. 基于图卷积网络的专利摘要自动生成研究 Automatic Generation of Patent Summarization Based on Graph Convolution Network 计算机科学, 2022, 49(6A): 172-177. https://doi.org/10.11896/jsjkx.210400117 |
[6] | 赵小虎, 叶圣, 李晓. 多算法融合的骨骼重建信息动作分类方法 Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction 计算机科学, 2022, 49(6): 269-275. https://doi.org/10.11896/jsjkx.210500070 |
[7] | 郭雨欣, 陈秀宏. 融合BERT词嵌入表示和主题信息增强的自动摘要模型 Automatic Summarization Model Combining BERT Word Embedding Representation and Topic Information Enhancement 计算机科学, 2022, 49(6): 313-318. https://doi.org/10.11896/jsjkx.210400101 |
[8] | 周海榆, 张道强. 面向多中心数据的超图卷积神经网络及应用 Multi-site Hyper-graph Convolutional Neural Networks and Application 计算机科学, 2022, 49(3): 129-133. https://doi.org/10.11896/jsjkx.201100152 |
[9] | 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松. 基于交互注意力图卷积网络的方面情感分类 Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification 计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180 |
[10] | 解宇, 杨瑞玲, 刘公绪, 李德玉, 王文剑. 基于动态拓扑图的人体骨架动作识别算法 Human Skeleton Action Recognition Algorithm Based on Dynamic Topological Graph 计算机科学, 2022, 49(2): 62-68. https://doi.org/10.11896/jsjkx.210900059 |
[11] | 宋龙泽, 万怀宇, 郭晟楠, 林友芳. 面向出租车空载时间预测的多任务时空图卷积网络 Multi-task Spatial-Temporal Graph Convolutional Network for Taxi Idle Time Prediction 计算机科学, 2021, 48(7): 112-117. https://doi.org/10.11896/jsjkx.201000089 |
[12] | 宋元隆, 吕光宏, 王桂芝, 贾吾财. 基于图卷积神经网络的SDN网络流量预测 SDN Traffic Prediction Based on Graph Convolutional Network 计算机科学, 2021, 48(6A): 392-397. https://doi.org/10.11896/jsjkx.200800090 |
[13] | 董哲, 邵若琦, 陈玉梁, 翟维枫. 基于BERT和对抗训练的食品领域命名实体识别 Named Entity Recognition in Food Field Based on BERT and Adversarial Training 计算机科学, 2021, 48(5): 247-253. https://doi.org/10.11896/jsjkx.200800181 |
[14] | 吕明琪, 洪照雄, 陈铁明. 一种融合时空关联与社会事件的交通流预测方法 Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events 计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098 |
[15] | 余诗媛, 郭淑明, 黄瑞阳, 张建朋, 苏珂. 嵌套命名实体识别研究进展 Overview of Nested Named Entity Recognition 计算机科学, 2021, 48(11A): 1-10. https://doi.org/10.11896/jsjkx.201100165 |
|