计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 392-397.doi: 10.11896/jsjkx.200800090
宋元隆, 吕光宏, 王桂芝, 贾吾财
SONG Yuan-long, LYU Guang-hong, WANG Gui-zhi, JIA Wu-cai
摘要: 精确和实时的网络流量预测在SDN网络中扮演着重要角色,同时对流量工程、网络控制起到重要作用。由于网络拓补的约束和时间的动态变化,即空间和时间特征,使得网络流量预测问题已经成为一个公认的科学问题。为了有效提取空间和时间特征,提出一种基于神经网络的预测模型,即结合了图卷积和门控循环单元的模型。图卷积网络可以有针对性地提取到复杂拓补的空间特征,同时门控循环单元能提取到流量的时间特征,两者的结合可以有效地预测软定义网络中的流量。在模型性能比较方面,将提出的GCGRU与经典方法进行了比较。评估指标包括MSE,RMSE,MAE。实验结果表明,GCGRU能够更有效地进行流量预测。
中图分类号:
[1] KREUTZ D.Software-Defined Networking:A Comprehensive Survey[J].Proceedings of the IEEE,2015,103(1):14-76. [2] CORTEZ P.Internet Traffic Forecasting using Neural Network[C]//IEEE International Joint Conference on Neural Network Proceedings.2006:2635-2642. [3] FENG H,SHU Y.Study on network traffic prediction tech-niques[C]//International Conference on Wireless Communications,Networking and Mobile Computing.2005:1041-1044. [4] DAI J,LI J.VBR MPEG Video Traffic Dynamic PredictionBased on the Modeling and Forecast of Time Series[C]//Fifth International Joint Conference on INC,IMS and IDC.2009:1752-1757. [5] BARABAS M.Evaluation of network traffic predictionbased on neural networks with multi-task learning and multiresolution decomposition[C]//IEEE 7th International Conference on Intelligent Computer Communication and Processing.2011:95-102. [6] KELLERER W,KALMBACH P,BLENK A,et al.Adaptable and Data-Driven Softwarized Networks:Review,Opportunities,and Challenges[J].Proceedings of the IEEE,2019,107(4):711-731. [7] JIA Y,WU J,DU Y.Traffic speed prediction using deep learning method[C]//IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).2016:1217-1222. [8] LV Y S,DUAN Y J,KANG W W,et al.Traffic flow prediction with big data:a deep learning approach[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(2):865-873. [9] AZZOUNI A,PUJOLLE G.NeuTM:A neural network-based framework for traffic matrix prediction in SDN[C]//NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium.2018:1-5. [10] RAMAKRISHNAN N,SONI T.Network Traffic PredictionUsing Recurrent Neural Networks[C]//International Conference on Machine Learning and Applications.2018:187-193. [11] LIU Z.Traffic Matrix Prediction Based onDeep Learning for Dynamic Traffic Engineering[C]//IEEE Symposium on Computers and Communications (ISCC).2019:1-7. [12] XU B B,CEN K T,HUANG J J,et al.A survey of neural network of graph convolution [J].Chinese Journal of Computers,2020,43(5):755-780. [13] WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32:4-24. [14] SATO R.A Survey on The Expressive Power of Graph Neural Networks[J].arXiv:2003.04078,2020. [15] KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:1609.02907,2016. [16] RUSEK K.RouteNet:Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN[J].IEEE Journal on Selected Areas in Communications,2020,38(10):2260-2270. [17] CUI Z,HENRICKSON K,KE R,et al.High-Order Graph Convolutional Recurrent Neural Network:A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting[J].arXiv:1802.07007. [18] SHUMA N,DAVID I,NARAN G,et al.The Emerging Field of Signal Processing on Graphs[J].IEEE Signal Processing Magazine,2013,30(3):83-98. [19] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[J].arXiv:1606.09375. [20] UHLIG S,QUOITIN B,LEPROPRE J,et al.Providing publicintradomain traffic matrices to the research community[J].Acm Sigcomm Computer Communication Review,2006,36(1):83-86. |
[1] | 吕明琪, 洪照雄, 陈铁明. 一种融合时空关联与社会事件的交通流预测方法[J]. 计算机科学, 2021, 48(2): 264-270. |
[2] | 曹素娥, 杨泽民. 基于聚类分析算法和优化支持向量机的无线网络流量预测[J]. 计算机科学, 2020, 47(8): 319-322. |
[3] | 蒋宗礼, 李苗苗, 张津丽. 基于融合元路径图卷积的异质网络表示学习[J]. 计算机科学, 2020, 47(7): 231-235. |
[4] | 熊亭, 戚湧, 张伟斌. 基于DCGRU-RF模型的路网短时交通流预测[J]. 计算机科学, 2020, 47(5): 84-89. |
[5] | 姚立霜, 刘丹, 裴作飞, 王云锋. 基于EMD聚类的实时网络流量预测模型[J]. 计算机科学, 2020, 47(11A): 316-320. |
[6] | 张德干, 杨鹏, 张捷, 高瑾馨, 张婷. 基于量子粒子群优化策略的车联网交通流量预测方法[J]. 计算机科学, 2020, 47(11A): 327-333. |
[7] | 张彤,秦小麟. 时间依赖路网上的移动对象K近邻查询算法[J]. 计算机科学, 2020, 47(1): 79-86. |
[8] | 孔繁钰, 周愉峰, 陈纲. 基于时空特征挖掘的交通流量预测方法[J]. 计算机科学, 2019, 46(7): 322-326. |
[9] | 郭晟楠, 林友芳, 金文蔚, 万怀宇. 基于时空循环卷积网络的城市区域人口流量预测[J]. 计算机科学, 2019, 46(6A): 385-391. |
[10] | 冯贵兰, 李正楠, 周文刚. 大数据分析技术在网络领域中的研究综述[J]. 计算机科学, 2019, 46(6): 1-20. |
[11] | 张杰, 白光伟, 沙鑫磊, 赵文天, 沈航. 基于时空特征的移动网络流量预测模型[J]. 计算机科学, 2019, 46(12): 108-113. |
[12] | 李佳佳, 沈盼盼, 夏秀峰, 刘向宇. 时间依赖路网中反向 k近邻查询[J]. 计算机科学, 2019, 46(1): 232-237. |
[13] | 赵卓峰,杨宗润. 基于残差修正GM(1,1)模型的车流量预测[J]. 计算机科学, 2017, 44(4): 96-99. |
[14] | 葛诗春,刘雄飞,周锋. CRH2型动车组列车信息传输网络流量建模与预测[J]. 计算机科学, 2017, 44(10): 91-95. |
[15] | 柳永波,刘乃安,李晓辉,冀琼. 基于流量预测的无线mesh网络负载均衡路由协议[J]. 计算机科学, 2017, 44(1): 109-112. |
|