Computer Science ›› 2020, Vol. 47 ›› Issue (11): 186-191.doi: 10.11896/jsjkx.191200063
• Computer Graphics & Multimedia • Previous Articles Next Articles
FAN Wei1, LIU Ting1, HUANG Rui1, GUO Qing2, ZHANG Bao2
CLC Number:
[1] LIU S,QI L,QIN H,et al.Path Aggregation Network for Instance Segmentation[J].arXiv:1803.01534. [2] LUO J,SAVAKIS A E,SINGHAL A.A Bayesian network-based framework for semantic image understanding[J].Pattern Recognition,2005,38(6):919-934. [3] LI L,JIANG S Q,HUANG Q M.Learning Hierarchical Semantic Description Via Mixed-Norm Regularization for Image Understanding[J].IEEE Transactions on Multimedia,2012,14(5):1401-1413. [4] LOZANO S,MÖLLER K,BRENDLE A,et al.AUTOPILOT-BT:A system for knowledge and model based mechanical ventilation[J].Technology and Health Care,2008,16(1):1-11. [5] THEIS J,OSSMANN D,THIELECKE F,et al.Robust autopilot design for landing a large civil aircraft in crosswind[J].Control Engineering Practice,2018,76:54-64. [6] ZHU J,LAO Y W,ZHENG Y F.Object Tracking in Structured Environments for Video Surveillance Applications[J].IEEE Transactions on Circuits and Systems for Video Technology,2010,20(2):223-235. [7] GILBERT A L,GILES M K,FLACHS G M,et al.A Real-Time Video Tracking System[J].IEEE Transactions on Pattern Ana-lysis and Machine Intelligence,1980(1):10. [8] SALTI S,CAVALLARO A,DI STEFANO L.Adaptive Ap-pearance Modeling for Video Tracking:Survey and Evaluation[J].IEEE Transactions on Image Processing,2012,21(10):4334-4348. [9] YEE K P,SWEARINGEN K,LI K,et al.Faceted metadata for image search and browsing[C]//Proceedings of the 2003 Conference on Human Factors in Computing Systems(CHI 2003).Ft.Lauderdale,Florida,USA,2003. [10] WANG M,LI H,TAO D C,et al.Multimodal Graph-BasedReranking for Web Image Search[J].IEEE Transactions on Ima-ge Processing,2012,21(11):4649-4661. [11] LI X,LIU Z,LUO P,et al.Not All Pixels Are Equal:Difficulty-aware Semantic Segmentation via Deep Layer Cascade[J].ar-Xiv:1704.01344. [12] LIU Z,LI X,LUO P,et al.Semantic Image Segmentation viaDeep Parsing Network[J].arXiv:1509.02634. [13] PINHEIRO P O,COLLOBERT R,DOLLAR P.Learning toSegment Object Candidates[J].arXiv:1506.06204. [14] PINHEIRO P O,LIN T Y,COLLOBERT R,et al.Learning to Refine Object Segments[J].arXiv:1603.08695. [15] DAI J,HE K,LI Y,et al.Instance-sensitive Fully Convolutional Networks[J].arXiv:1603.08678. [16] DAI J,HE K,SUN J.Instance-aware Semantic Segmentation via Multi-task Network Cascades[J].arXiv:1512.04412. [17] HAYDER Z,HE X,SALZMANN M.Boundary-Aware Instance Segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2017. [18] DAI J,LI Y,HE K,et al.R-FCN:Object Detection via Region-based Fully Convolutional Networks[J].arXiv:1605.06409. [19] GIRSHICK R.Fast r-cnn[C]//2015 IEEE International Confe-rence on Computer Vision (ICCV).IEEE,2016. [20] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [21] LI Y,QI H,DAI J,et al.Fully Convolutional Instance-Aware Semantic Segmentation[C]//2017 IEEE Conference on Compu-ter Vision and Pattern Recognition (CVPR).Honolulu,HI:IEEE,2017:4438-4446. [22] CHEN L C,HERMANS A,PAPANDREOU G,et al.Mask-Lab:Instance Segmentation by Refining Object Detection with Semantic and Direction Features[J].arXiv:1712.04837. [23] HE K,GKIOXARI G,PIOTR DOLLÁ R,et al.Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV).IEEE,2017. [24] HUANG Z,HUANG L,GONG Y,et al.Mask Scoring R-CNN[J].arXiv:1903.00241. [25] CHEN K,PANG J,WANG J,et al.Hybrid Task Cascade forInstance Segmentation[J].arXiv:1901.07518. [26] CAI Z,VASCONCELOS N.Cascade R-CNN:Delving into High Quality Object Detection[J].arXiv:1712.00726. [27] SUN Y,P P S K,SHIMAMURA J,et al.Concatenated Feature Pyramid Network for Instance Segmentation[J].arXiv:1904.00768. [28] LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature PyramidNetworks for Object Detection[J].arXiv:1612.03144. [29] LIANG X,LIN L,WEI Y,et al.Proposal-free Network for Instance-level Object Segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2018,40(12):2978-2991. [30] BAI M,URTASUN R.Deep Watershed Transform for Instance Segmentation[J].arXiv:1611.08303. [31] BEUCHER S,C ANTUÉL.Use of Watersheds in Contour Detection[C]//International workshop on image processing,real-time edge and motion detection.CCETT,1979. [32] KIRILLOV A,LEVINKOV E,ANDRES B,et al.InstanceCut:from Edges to Instances with MultiCut[J].arXiv:1611.08272. [33] JIN L,CHEN Z,TU Z.Object Detection Free Instance Segmentation With Labeling Transformations[J].arXiv:1611.08991. [34] LIU S,JIA J,FIDLER S,et al.SGN:Sequential Grouping Networks for Instance Segmentation[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:3516-3524. [35] REN M,ZEMEL R S.End-to-End Instance Segmentation with Recurrent Attention[C]//Computer Vision & Pattern Recognition.IEEE,2017. [36] ROMERA-PAREDES B,TORR P H S.Recurrent Instance Segmentation[J].Computer Science,2016,9910(10):312-329. [37] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780. [38] SHI X,CHEN Z,WANG H,et al.Convolutional LSTM Net-work:A Machine Learning Approach for Precipitation Nowcas-ting[J].arXiv:1506.04214. [39] ZEILER M D,FERGUS R.Visualizing and Understanding Convolutional Networks[J].arXiv:1311.2901. [40] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common Objects in Context[C]//European Conference on Computer Vision.Springer International Publishing,2014. [41] MASSA F,GIRSHICK R.maskrcnn-benchmark:Fast,modularreference implementation of Instance Segmentation and Object Detection algorithms in PyTorch[OL].https://github.com/facebookresearch/maskrcnn-benchmark. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[9] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[10] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[11] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[12] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[13] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[14] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
[15] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
|