Computer Science ›› 2021, Vol. 48 ›› Issue (6A): 38-42.doi: 10.11896/jsjkx.201000160
• Image Processing & Multimedia Technology • Previous Articles Next Articles
CUI Wen-hao1, JIANG Mu-rong1, YANG Lei2, FU Peng-ming1, ZHU Ling-xiao1
CLC Number:
[1] XIANG Y Y,LIU Z,JIN Z Y.High resolution solar image reconstruction method [J].Progress in astronomy,2016,1:94-110. [2] HUO Z X,ZHOU J F.Method of astronomical image recon-struction from speckle pattern [J].Progress in Astronomy,2010(1):74-94. [3] WU R G.Image super resolution reconstruction based on deep learning [D].Chengdu:University of Chinese Academy of Sciences (Institute of Optoelectronic Technology,Chinese Academy of Sciences),2020. [4] GOODFELLOW I J,POUGET-ANADIE J.Genera-tive Adversarial Networks [J].Advances in Neural Information Processing Systems,2014(3):2672-2680. [5] TANG C,LI J.Unpaired Low-Dose CT Denoising NetworkBased on Cycle-Consistent Generative Adversarial Network with Prior Image Information[J].Computational and Mathematical Methods in Medicine,2019(12):1-11. [6] SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[C]//Computer Vision and Pattern Recognition.2014. [7] LEDIG C,THEIS L.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [C]//CVPR.2017:574-591. [8] PRABHAKAR K R,SRIKAR V S,BABU R V.DeepFuse:A Deep Unsupervised Approach for Exposure Fusion with Ex-treme Exposure Image Pairs [C]//ICCV.2017:472. [9] TAI Y,GUO Y,CHEN Q,et al.Auto-embedding generativeadversarialnetworks for high resolution image synthesis[J].IEEE Transactions on Multimedia,2019(6):112. [10] ZENG R H ,XU H M,HUANG W B,et al.Dense regression networkfor video grounding[C]//IEEE Conference on Compu-ter Vision and Pattern Recognition.2020:618. [11] LEDIG C,THEIS L,HUSZAR F,et al.Photo-Realistic SingleImage Super-Resolution Using a Generative Adversarial Network [C]//IEEE Conference on Computer Vision & Pattern Recognition(CVPR).2016:137. [12] LEDIG C,THEIS L.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [C]//CVPR.2017:574-591. [13] ZHANG S L,YI B S,LI W Z,et al.Multi focus image fusion method based on image matting technology [J].Computer Applications,2016,36(7):1949-1953. [14] LIU Y,LIU S,WANG Z.Multi-focus image fusion with dense SIFT[J].Information Fusion,2015,23:139-155. [15] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//The British Machine VisionConfe-rence(BMVC).2012. [16] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//Curves and Surfaces.Sprin-ger,2012:711-730. [17] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//IEEE International Conference on Computer Vision (ICCV).2001:416-423. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[9] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[10] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[11] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[12] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[13] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
[14] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[15] | MAO Dian-hui, HUANG Hui-yu, ZHAO Shuang. Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance [J]. Computer Science, 2022, 49(6A): 523-530. |
|