Computer Science ›› 2022, Vol. 49 ›› Issue (5): 318-324.doi: 10.11896/jsjkx.210300281
• Information Security • Previous Articles Next Articles
HU Zhi-hao, PAN Zu-lie
CLC Number:
[1]LI J,ZHAO B,ZHANG C.Fuzzing:asurvey[J].Cybersecurity,2018,1(1):1-13. [2]COHEN M B,SNYDER J,ROTHERMEL G.Testing acrossconfigurations:implications for combinatorial testing[J].ACM SIGSOFT Software Engineering Notes,2006,31(6):1-9. [3]LIANG H,PEI X,JIA X,et al.Fuzzing:State ofthe art[J].IEEE Transactions on Reliability,2018,67(3):1199-1218. [4]PEACHTEC.Peach[EB/OL].(2017-10-06)[2021-04-17].http://www.peachfuzzer.com/products/peach-platform. [5]Beyond Security.beSTORM[EB/OL].(2021-04-17)[2021-04-17].https://beyondsecurity.com/solutions/bestorm.html. [6]PHAM V T,BÖHME M,ROYCHOUDHURY A.AFLNet:agreybox fuzzer for network protocols[C]//2020 IEEE 13th International Conference onSoftware Testing,Validation and Verification(ICST).IEEE,2020:460-465. [7]LI M L,HUANG H,LU Y L.Test Case Generation Technology Based on Symbol Divideand Conquer Area for Vulnerability Mining[J].Netinfo Security,2020,20(5):39-46. [8]GONG W,ZHANG G,ZHOU X.Learn to Accelerate Identif-ying New Test Cases in Fuzzing[C]//International Conference on Security,Pri-vacy and Anonymity in Computation,Communication and Storage.Cham:Springer,2017:298-307. [9]KARAMCHETI S,MANN G,ROSENBERG D.ImprovingGrey-Box Fuzzing by Modeling Program Behavior[J].arXiv:1811.08973,2018. [10]ZONG P,LV T,WANG D,et al.Fuzzguard:Filteringout un-reachable inputs in directed grey-box fuzzing through deep learning[C]//29th Security Symposium (USENIX).2020:2255-2269. [11]ZHANG X,LI Z J.Surveyof Fuzz TestingTechnology[J].Computer Science,2016,43(5):1-8,26. [12]JIANG Y G,CHEN X,LI J B,et al.A FuzzyTest Case Generation Method based on LSTM for S7 Protocol[J].Computer Engineering,2021,47(7):183-188. [13]ZALEWSKI M.American fuzzy lop[EB/OL].(2017-11-05)[2021-04-17].https://github.com/mirrorer/afl. [14]LCAMTUF.AFL fuzzing strategies[EB/OL].(2014-08-08)[2021-04-17].https://lcamtuf.blogspot.jp/2014/08/binary-fuzzing-strategies-what-works.html. [15]SCHMIDHUBER J.Gradient Flow in RecurrentNets:the Difficulty of Learning Long-Term Dependencies[M]//Wiley-IEEE Press,2001. [16]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Me-mory[J].Neural Computation,1997,9(8):1735-1780. [17]BRADBURY J,MERITY S,XIONG C,et al.Quasi-recu-rrent neural networks[J].arXiv:1611.01576,2016. [18]LOU Y X,YUAN W H,PENG R Q.Speech EnhancementMethod Based on Quasi Recurrent Neural Network[J].Computer Engineering,2020,46(4):316-320. [19]WANG Y,JIA P,LIU L,et al.A systematic reviewof fuzzingbased on machine learning techniques[J].PLoS ONE,2020,15(8):e0237749. [20]QIU X P.Neural Networks and Deep Learning[M].Beijing:China Machine Press,2020. [21]ZHOU Y H.Research on Network Protocol Vulnerability Mining Method Based on Deep Learning[D].Chengdu:University of Electronic Science and Technology of China,2020. [22]XU L L,CHI D X.Machine learning classification strategy for imbalanced data sets[J].Computer Engineeringand Applications,2020,56(24):12-27. [23]BIND 9[EB/OL].(2004-01-28)[2021-04-17].https://www.isc.org/bind/. |
[1] | DONG Qi-da, WANG Zhe, WU Song-yang. Feature Fusion Framework Combining Attention Mechanism and Geometric Information [J]. Computer Science, 2022, 49(5): 129-134. |
[2] | ZHONG Jiang, YIN Hong, ZHANG Jian. Academic Knowledge Graph-based Research for Auxiliary Innovation Technology [J]. Computer Science, 2022, 49(5): 194-199. |
[3] | JIAO Xiang, WEI Xiang-lin, XUE Yu, WANG Chao, DUAN Qiang. Automatic Modulation Recognition Based on Deep Learning [J]. Computer Science, 2022, 49(5): 266-278. |
[4] | GAO Yue, FU Xiang-ling, OUYANG Tian-xiong, CHEN Song-ling, YAN Chen-wei. EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network [J]. Computer Science, 2022, 49(4): 30-36. |
[5] | YAO Xiao-ming, DING Shi-chang, ZHAO Tao, HUANG Hong, LUO Jar-der, FU Xiao-ming. Big Data-driven Based Socioeconomic Status Analysis:A Survey [J]. Computer Science, 2022, 49(4): 80-87. |
[6] | CAO He-xin, ZHAO Liang, LI Xue-feng. Technical Research of Graph Neural Network for Text-to-SQL Parsing [J]. Computer Science, 2022, 49(4): 110-115. |
[7] | DOU Zhi, WANG Ning, WANG Shi-jie, WANG Zhi-hui, LI Hao-jie. Sketch Colorization Method with Drawing Prior [J]. Computer Science, 2022, 49(4): 195-202. |
[8] | LI Peng, YI Xiu-wen, QI De-kang, DUAN Zhe-wen, LI Tian-rui. Heating Strategy Optimization Method Based on Deep Learning [J]. Computer Science, 2022, 49(4): 263-268. |
[9] | MIAO Xu-peng, ZHOU Yue, SHAO Ying-xia, CUI Bin. GSO:A GNN-based Deep Learning Computation Graph Substitutions Optimization Framework [J]. Computer Science, 2022, 49(3): 86-91. |
[10] | WANG Mei-ling, LIU Xiao-nan, YIN Mei-juan, QIAO Meng, JING Li-na. Deep Learning Recommendation Algorithm Based on Reviews and Item Descriptions [J]. Computer Science, 2022, 49(3): 99-104. |
[11] | CHEN Shi-cong, YUAN De-yu, HUANG Shu-hua, YANG Ming. Node Label Classification Algorithm Based on Structural Depth Network Embedding Model [J]. Computer Science, 2022, 49(3): 105-112. |
[12] | WEN Cheng-yu, FANG Wei-dong, CHEN Wei. Object Initialization in Multiple Object Tracking:A Review [J]. Computer Science, 2022, 49(3): 152-162. |
[13] | ZHANG Shu-meng, YU Zeng, LI Tian-rui. Transferable Emotion Analysis Method for Cross-domain Text [J]. Computer Science, 2022, 49(3): 218-224. |
[14] | DENG Wei-bin, ZHU Kun, LI Yun-bo, HU Feng. FMNN:Text Classification Model Fused with Multiple Neural Networks [J]. Computer Science, 2022, 49(3): 281-287. |
[15] | LI Hao, CAO Shu-yu, CHEN Ya-qing, ZHANG Min. User Trajectory Identification Model via Attention Mechanism [J]. Computer Science, 2022, 49(3): 308-312. |
|