Computer Science ›› 2020, Vol. 47 ›› Issue (9): 123-128.doi: 10.161896/jsjkx.190800101
• Computer Graphics & Multimedia • Previous Articles Next Articles
HE Xin1, XU Juan1,2, JIN Ying-ying1
CLC Number:
[1] SOOMRO K,ZAMIR A R,SHAH M.UCF101:A dataset of101 human actions classes from videos in the wild[J].arXiv:1212.0402,2012. [2] KUEHNE H,JHUANG H,GARROTE E,et al.HMDB:a large video database for human motion recognition[C]//2011 International Conference on Computer Vision.IEEE,2011:2556-2563. [3] GOYAL R,KAHOU S E,MICHALSKI V,et al.The Something Something Video Database for Learning and Evaluating Visual Common Sense[C]//ICCV.2017,1(2):3. [4] KAY W,CARREIRA J,SIMONYAN K,et al.The kinetics human action video dataset[J].arXiv:1705.06950,2017. [5] RUSSAKOVSKY O,DENG J,SUH,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [6] SIMONYAN K,ZISSERMAN A.Two-stream convolutionalnetworks for action recognition in videos[C]//Advances in neural information processing systems.2014:568-576. [7] DU T,BOURDEV L D,FERGUS R,et al.C3d:generic features for video analysis[J].Eprint Arxiv,2014,2(8). [8] DONAHUE J,ANNE HENDRICKS L,GUADARRAMA S,et al.Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:2625-2634. [9] CARREIRA J,ZISSERMAN A.Quo vadis,action recognition? a new model and the kinetics dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:6299-6308. [10] QIU Z,YAO T,MEI T.Learning spatio-temporal representation with pseudo-3d residual networks[C]//proceedings of the IEEE International Conference on Computer Vision.2017:5533-5541. [11] XIE S,SUN C,HUANG J,et al.Rethinking spatiotemporal feature learning:Speed-accuracy trade-offs in video classification[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:305-321. [12] TRAN D,WANG H,TORRESANI L,et al.A closer look at spatiotemporal convolutions for action recognition[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.2018:6450-6459. [13] CRASTO N,WEINZAEPFEL P,ALAHARI K,et al.MARS:Motion-Augmented RGB Stream for Action Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:7882-7891. [14] SUN S,KUANG Z,SHENGL,et al.Optical flow guided feature:A fast and robust motion representation for video action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1390-1399. [15] WANG L,XIONG Y,WANG Z,et al.Temporal segment networks:Towards good practices for deep action recognition[C]//European Conference on Computer Vision.Springer,Cham,2016:20-36. [16] ZHOU B L,ANDONIAN A,OLIVA A,et al.Temporal relational reasoning in videos[C]//Proceedings of the EuropeanConfe-rence on Computer Vision (ECCV).2018:803-818. [17] ZOLFAGHARI M,SINGH K,BROX T.Eco:Efficient convolutional network for online video understanding[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:695-712. [18] MA C Y,CHEN M H,KIRA Z,et al.Ts-lstm and temporal-inception:Exploiting spatiotemporal dynamics for activity recognition[J].Signal Processing:Image Communication,2019,71:76-87. [19] CHEN Q,ZHU X,LING Z,et al.Enhanced lstm for natural language inference[J].arXiv:1609.06038,2016. [20] GAO L,GUO Z,ZHANG H,et al.Video captioning with attention-based LSTM and semantic consistency[J].IEEE Transactions on Multimedia,2017,19(9):2045-2055. [21] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [22] IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015. [23] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [24] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. |
[1] | WANG Rui-ping, JIA Zhen, LIU Chang, CHEN Ze-wei, LI Tian-rui. Deep Interest Factorization Machine Network Based on DeepFM [J]. Computer Science, 2021, 48(1): 226-232. |
[2] | YU Wen-jia, DING Shi-fei. Conditional Generative Adversarial Network Based on Self-attention Mechanism [J]. Computer Science, 2021, 48(1): 241-246. |
[3] | TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin. Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing [J]. Computer Science, 2021, 48(1): 258-267. |
[4] | DING Yu, WEI Hao, PAN Zhi-song, LIU Xin. Survey of Network Representation Learning [J]. Computer Science, 2020, 47(9): 52-59. |
[5] | YE Ya-nan, CHI Jing, YU Zhi-ping, ZHAN Yu-liand ZHANG Cai-ming. Expression Animation Synthesis Based on Improved CycleGan Model and Region Segmentation [J]. Computer Science, 2020, 47(9): 142-149. |
[6] | DENG Liang, XU Geng-lin, LI Meng-jie, CHEN Zhang-jin. Fast Face Recognition Based on Deep Learning and Multiple Hash Similarity Weighting [J]. Computer Science, 2020, 47(9): 163-168. |
[7] | BAO Yu-xuan, LU Tian-liang, DU Yan-hui. Overview of Deepfake Video Detection Technology [J]. Computer Science, 2020, 47(9): 283-292. |
[8] | YUAN Ye, HE Xiao-ge, ZHU Ding-kun, WANG Fu-lee, XIE Hao-ran, WANG Jun, WEI Ming-qiang, GUO Yan-wen. Survey of Visual Image Saliency Detection [J]. Computer Science, 2020, 47(7): 84-91. |
[9] | WANG Wen-dao, WANG Run-ze, WEI Xin-lei, QI Yun-liang, MA Yi-de. Automatic Recognition of ECG Based on Stacked Bidirectional LSTM [J]. Computer Science, 2020, 47(7): 118-124. |
[10] | LIU Yan, WEN Jing. Complex Scene Text Detection Based on Attention Mechanism [J]. Computer Science, 2020, 47(7): 135-140. |
[11] | ZHANG Zhi-yang, ZHANG Feng-li, TAN Qi, WANG Rui-jin. Review of Information Cascade Prediction Methods Based on Deep Learning [J]. Computer Science, 2020, 47(7): 141-153. |
[12] | JIANG Wen-bin, FU Zhi, PENG Jing, ZHU Jian. 4Bit-based Gradient Compression Method for Distributed Deep Learning System [J]. Computer Science, 2020, 47(7): 220-226. |
[13] | CHEN Jin-yin, ZHANG Dun-Jie, LIN Xiang, XU Xiao-dong and ZHU Zi-ling. False Message Propagation Suppression Based on Influence Maximization [J]. Computer Science, 2020, 47(6A): 17-23. |
[14] | CHENG Zhe, BAI Qian, ZHANG Hao, WANG Shi-pu and LIANG Yu. Improving Hi-C Data Resolution with Deep Convolutional Neural Networks [J]. Computer Science, 2020, 47(6A): 70-74. |
[15] | HE Lei, SHAO Zhan-peng, ZHANG Jian-hua and ZHOU Xiao-long. Review of Deep Learning-based Action Recognition Algorithms [J]. Computer Science, 2020, 47(6A): 139-147. |
|