Computer Science ›› 2022, Vol. 49 ›› Issue (8): 172-177.doi: 10.11896/jsjkx.210600061
• Computer Graphics & Multimedia • Previous Articles Next Articles
SUN Qi, JI Gen-lin, ZHANG Jie
CLC Number:
[1]WANG Z G,ZHANG Y J.Anomaly detection in surveillancevideos:A survey [J].Journal of Tsinghua University(Science and Technology),2020,60(6):518-529. [2]COLQUE R V H M,CAETANO C,DE ANDRADE M T L. Histograms of Optical Flow Orientation and Magnitude to Detect Anomalous Events in Videos[C]//The 28th SIBGRAPI Conference on Graphics,Patterns and Images.IEEE Computer Society.2015:673-682. [3]CHANDOLA V,BANERJEE A,KUMAR V.Anomaly detec-tion:A survey [J].ACM Computer,2009,41(3):1-15. [4]MAHADEVAN V,LI W X.Anomaly detection in crowdedscenes[C]//The twenty-third IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2010:1975-1981. [5]WANG X L,GIRSHICK R B,GUPTA A,et al.Non-Local neural networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2018:7794-7803. [6]DALA N,TRIGGS B.Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE Computer Socie-ty,2005:886-893. [7]DALA N,TRIGGS B.Human detection using oriented histo-grams of flow and appearance[C]//The 9th European Confe-rence on Computer Vision.Lecture Notes In Computer Science,2006:428-441. [8]ZHANG J Y,XIE W X,ZHI K L.Abnormal crowd behavior detection based on motion effect map features of moving foregrounds [J].Journal of Signal Processing,2018,34(3):296-304. [9]ADAM A,RIVLIN E,SHIMSHONI I,et al.Robust real-time unusual event detection using multiple fixed-location monitors [J].IEEE Trans.Pattern Anal,2008,30(3):555-560. [10]KIM J,GRAUMAN K.Observe locally,infer globally:A space-time MRF for detecting abnormal activities with incremental updates[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2009:2921-2928. [11]MEHRAN R,OYAMA A,SHAH M.Abnormal crowd behavior detection using social force model [C]//Conference on Compu-ter Vision and Pattern Recognition.IEEE Computer Society,2009:935-942. [12]XU D,RICCI E,YAN Y,et al.Learning deep representations of appearance and motion for anomalous event detection[C]//British Machine Vision Conference 2015.BMVC,2015:1-12. [13]HASAN M,CHOI J,NEUMANN J,et al.Learning temporalregularity in video sequences[C]//Proceedings of the Confe-rence on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:733-742. [14]LUO W X,LIU W,GAO S H.A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//IEEE International Conference on Computer Vision.IEEE Computer Society,2017:341-349. [15]MORAIS R,LE V,TRAN T,et al.Learning regularity in skeleton trajectories for anomaly detection in videos[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2019:11996-12004. [16]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Neural Information Processing Systems 27,NIPS.2014:2672-2680. [17]REED S,AKATA Z,YAN X C,et al.Generative adversarial text to image synthesis[C]//The 33nd International Conference on Machine Learning.JMLR Workshop and Conference Procee-dings,2016:1060-1069. [18]VILLEGAS R,YANG J M,ZOU Y L,et al.Learning to gene-rate long-term future via hierarchical prediction[C]//The 34th International Conference on Machine Learning.PMLR,2017:3560-3569. [19]KWON Y H,PARK M.Predicting future frames using retrospective cycle GAN[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2019:1810-1820. [20]ILG E,MAYER N.FlowNet 2.0:evolution of optical flow estimation with deep networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2017:1647-1655. [21]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention.Lecture Notes in Computer Science,2015:234-241. [22]WANG X B,GIRSHICK R,GUPTA A,et al.Non-Local Neural Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2018:1768-1777. [23]LIU W,LUO W X,LIAN D Z,et al.Future frame prediction for anomaly detection-A new baseline[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer So-ciety,2018:6536-6545. [24]LU C W,SHI J P,JIA J Y.Abnormalevent detection at 150 FPS in MATLAB[C]//IEEE International Conference on Computer Vision.IEEE Computer Society,2013:2720-2727. [25]GONG D,LIU L Q,LE V,et al.Memorizing normality to detect anomaly:memory-augmented deep autoencoder for unsupervised anomaly detection[C]//IEEE/CVF International Conference on Computer Vision.IEEE Computer Society,2019:1705-1714. |
[1] | ZHANG Jia, DONG Shou-bin. Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer [J]. Computer Science, 2022, 49(9): 41-47. |
[2] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[3] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[4] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[5] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[6] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[7] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[8] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[9] | DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119. |
[10] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[11] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[12] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[13] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[14] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
[15] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
|