Computer Science ›› 2025, Vol. 52 ›› Issue (4): 129-137.doi: 10.11896/jsjkx.240100111
• Database & Big Data & Data Science • Previous Articles Next Articles
AN Rui1, LU Jin1,2, YANG Jingjing1
CLC Number:
[1]APARNA R,IDICULA S M.Spatio-Temporal Data Clustering Using Deep Learning:A Review [C]//2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems(EAIS).2022:1-10. [2]XIE J,GIRSHICK R,FARHADI A.Unsupervised Deep Embedding for Clustering Analysis [C]//Proceedings of the International Conference on Machine Learning(ICML).2016:478-487. [3]GUO X,GAO L,LIU X,et al.Improved Deep Embedded Clustering with Local Structure Preservation [C]//Proceedings of the International Conference on Machine Learning(ICML).2017:1753-1759. [4]GUO X,LIU X,ZHU E,et al.Deep Clustering with Convolutional Autoencoders [C]//Neural Information Processing.2017:373-382. [5]SUN Z,SUN H.Stacked Denoising Autoencoder with Density-Grid Based Clustering Method for Detecting Outlier of Wind Turbine Components[J].IEEE Access,2019,7(1):13078-13091. [6]CAI J,WANG S,GUO W.Unsupervised Embedded FeatureLearning for Deep Clustering with Stacked Sparse Auto-Encoder[J].Expert Systems with Applications,2021,186(30):115729-115740. [7]REN Y,HU K,DAI X,et al.Semi-Supervised Deep Embedded Clustering[J].Neurocomputing,2019,325(10):121-130. [8]JIANG Z,ZHENG Y,TAN H,et al.Variational Deep Embedding:An Unsupervised and Generative Approach to Clustering [C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.2017:1965-1972. [9]KANG Y,KOU Y Q,XIE S Y,et al.Deep Clustering Model Based on Fusion Variational Graph Attention Self-Encoder[J].Computer Science,2021,48(S2):81-87,116. [10]LI X,ZHAO X,CHU D,et al.An Autoencoder-Based Spectral Clustering Algorithm[J].Soft Computing,2020,24(3):1661-1671. [11]ZHENG F F.The Research on Modulation Signal RecognitionTechnology Based on Deep Autoencoders[D].Dalian:Dalian University of Technology,2021. [12]ZHENG M,LUO L,ZHENG H,et al.A Dual Encoder-Decoder Network for Self-Supervised Monocular Depth Estimation[J].IEEE Sensors Journal,2023,23(17):19747-19756. [13]YAN F,YAN B,PEI M.Dual Transformer Encoder Model for Medical Image Classification [C]//2023 IEEE International Conference on Image Processing(ICIP).2023:690-694. [14]YANG L,FAN W,BOUGUILA N.Deep Clustering AnalysisVia Dual Variational Autoencoder with Spherical Latent Embeddings[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(9):6303-6312. [15]KOBAYASHI T.T-Vmf Similarity for Regularizing Intra-Class Feature Distribution [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2021:6612-6621. [16]MACQUEEN J.Some Methods for Classification and Analysis of Multivariate Observations [C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.1967:281-297. [17]SONG C,LIU F,HUANG Y,et al.Auto-Encoder Based Data Clustering [C]//Progress in Pattern Recognition,Image Analysis,Computer Vision,and Applications.2013:117-124. [18]VINCENT P,LAROCHELLE H,BENGIO Y,et al.Extracting and Composing Robust Features with Denoising Autoencoders [C]//Proceedings of the 25th International Conference on Machine learning.2008:1096-1103. [19]ZHANG K,SONG C,QIU L.Self-Paced Deep Clustering with Learning Loss[J].Pattern Recognition Letters,2023,171(1):8-14. [20]MASCI J,MEIER U,CIREŞAN D,et al.Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction [C]//ArtificialNeural Networks and Machine Learning(ICML).2011:52-59. [21]DU X L,CHEN Z G,XU X,et al.Improved Fault DiagnosisMethod for Bearing Faults Using Deep Wavelet Autoencoder[J].Computer Engineering and Applications,2020,56(5):263-269. [22]HAIDONG S,HONGKAI J,KE Z,et al.A Novel TrackingDeep Wavelet Auto-Encoder Method for Intelligent Fault Diagnosis of Electric Locomotive Bearings[J].Mechanical Systems and Signal Processing,2018,110(1):193-209. [23]HASNAT A,BOHNé J,MILGRAM J,et al.Von Mises-Fisher Mixture Model-Based Deep Learning:Application to Face Verification[J].arXiv:1706.04264,2017. [24]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-BasedLearning Applied to Document Recognition[C]//Proceedings of the IEEE.1998:2278-2324. [25]XIAO H,RASUL K,VOLLGRAF R.Fashion-Mnist:A Novel Image Dataset for Benchmarking Machine Learning Algorithms[J].arXiv:1708.07747,2017. [26]HULL J J.A Database for Handwritten Text Recognition Research[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(5):550-554. [27]PADMANABHAN D,BHAT S,SHEVADE S K,et al.Topic Model Based Multi-Label Classification from the Crowd[J].arXiv:1604.00783,20167. [28]NENE S A,NAYAR S K,MURASE H.Columbia Object Image Library(Coil-20):CUCS-005-96[R].1996. [29]NENE S A,NAYAR S K,MURASE H.Columbia Object Image Library(Coil100):CUCS-006-96[R].1996. [30]YANG J,SHI R,WEI D,et al.Medmnist V2-a Large-ScaleLightweight Benchmark for 2d and 3d Biomedical Image Classification[J].Scientific Data,2023,10(1):41-51. [31]XU W,LIU X,GONG Y.Document Clustering Based on Non-Negative Matrix Factorization [C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval.2003:267-273. [32]MCLACHLAN G J,LEE S X,RATHNAYAKE S I.FiniteMixture Models[J].Annual Review of Statistics and Its Application,2019,6(1):355-378. [33]TAGHIA J,MA Z,LEIJON A.Bayesian Estimation of the Von-Mises Fisher Mixture Model with Variational Inference[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(9):1701-1715. [34]CHEN X,DUAN Y,HOUTHOOFT R,et al.Infogan:Inter-pretable Representation Learning by Information Maximizing Generative Adversarial Nets [C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:2180-2188. [35]MUKHERJEE S,ASNANI H,LIN E,et al.Clustergan:Latent Space Clustering in Generative Adversarial Networks [C]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence.2019. [36]BU H.Deep Clustering Based on Contractive Autoencoder and Self-PacedLearning [C]//2023 4th International Conference on Computer Vision,Image and Deep Learning(CVIDL).2023:458-462. [37]MIKLAUTZ L,BAUER L G M,MAUTZ D,et al.Details(Don’t)Matter:Isolating Cluster Information in Deep Embedded Spaces [C]//International Joint Conference on Artificial Intelligence.2021:2826-2832. [38]LAURENS V D M,HINTON G.Visualizing Data Using T-Sne[J].Journal of Machine Learning Research,2008,9(2605):2579-2605. |
[1] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[2] | FU Kun, CUI Jingyuan, DANG Xing, CHENG Xiao, YING Shicong, LI Jianwei. Study on Graph Data Augmentation Based on Graph Entropy Theory [J]. Computer Science, 2025, 52(5): 149-160. |
[3] | WANG Haiyong, DING Gufei. ECG Signal Denoising Method Based on Stationary Wavelet Transform with Hyperbolic TangentThreshold Function [J]. Computer Science, 2025, 52(5): 179-186. |
[4] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
[5] | HE Liren, PENG Bo, CHI Mingmin. Unsupervised Multi-class Anomaly Detection Based on Prototype Reverse Distillation [J]. Computer Science, 2025, 52(2): 202-211. |
[6] | DING Xinyu, KONG Bing, CHEN Hongmei, BAO Chongming, ZHOU Lihua. Path-masked Autoencoder Guiding Unsupervised Attribute Graph Node Clustering [J]. Computer Science, 2025, 52(1): 160-169. |
[7] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[8] | DAI Chaofan, DING Huahua. Domain-adaptive Entity Resolution Algorithm Based on Semi-supervised Learning [J]. Computer Science, 2024, 51(9): 214-222. |
[9] | LI Dongyang, NIE Rencan, PAN Linna, LI He. UMGN:An Infrared and Visible Image Fusion Network Based on Unsupervised Significance MaskGuidance [J]. Computer Science, 2024, 51(6A): 230600170-5. |
[10] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
[11] | DUAN Pengsong, DIAO Xianguang, ZHANG Dalong, CAO Yangjie, LIU Guangyi, KONG Jinsheng. WiCare:Non-contact Fall Monitoring Model for Elderly in Toilet [J]. Computer Science, 2024, 51(6A): 230700044-8. |
[12] | LOU Ren, HE Renqiang, ZHAO Sanyuan, HAO Xin, ZHOU Yueqi, WANG Xinyuan, LI Fangfang. Single Stage Unsupervised Visible-infrared Person Re-identification [J]. Computer Science, 2024, 51(6A): 230600138-7. |
[13] | HE Yifan, HE Yulin, CUI Laizhong, HUANG Zhexue. Subspace-based I-nice Clustering Algorithm [J]. Computer Science, 2024, 51(6): 153-160. |
[14] | PAN Lei, LIU Xin, CHEN Junyi, CHENG Zhangtao, LIU Leyuan, ZHOU Fan. Event Prediction Based on Dynamic Graph with Local Data Augmentation [J]. Computer Science, 2024, 51(3): 118-127. |
[15] | CAI Jiacheng, DONG Fangmin, SUN Shuifa, TANG Yongheng. Unsupervised Learning of Monocular Depth Estimation:A Survey [J]. Computer Science, 2024, 51(2): 117-134. |
|